\beta_1 Near-Rings

G. Sugantha

Department of Mathematics
Pope’s College, Sawyerpuram-628 251
Tamil Nadu, India

R. Balakrishnan

PG & Research Department of Mathematics
V.O. Chidambaram College, Tuticorin-628 008
Tamil Nadu, India

Copyright © 2014 G. Sugantha and R. Balakrishnan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we introduce the notion of \beta_1 near-rings and study some of their properties. We furnish a complete characterization and also a structure theorem for such near-rings.

Mathematics Subject Classification : 16Y30

Keywords : \beta_1 near-ring, near-field.

1 Introduction

A right near-ring is a non-empty set \(N \) together with two binary operations \(\cdot \) and \(+ \) such that (1) \((N, +)\) is a group, (2) \((N, \cdot)\) is a semi-group and (3) \((n_1 + n_2)n_3 = n_1n_3 + n_2n_3\) for all \(n_1, n_2, n_3 \in N \).

Throughout this paper \(N \) stands for a right near-ring \((N, +, \cdot)\) with at least two elements and \('0'\) denotes the identity element of the group \((N, +)\). Obviously, \(0n = 0\) for all \(n \) in \(N \). \(N \) is said to be zero-symmetric if \(n0 = 0 \) for all \(n \) in \(N \). As in [2], a subgroup of \((M, +)\) of \((N, +)\) is called an
N-subgroup of N if $NM \subset M$ and an invariant N subgroup of N if, in addition, $MN \subset M$. In [5], N is defined to be Pseudo commutative if $xyz = yzx$ for all x, y, z in N. The concept of a mate function in N has been introduced in [4] with a view to handling the regularity structure with considerable ease. A map f' from N into N is called (i) a mate function for N if $x = xf(x)x$, (ii) a P_3 mate function, if, in addition, $xf(x) = f(x)x$ for all x in N. By identity 1 of N, we mean only the multiplicative identity of N. Basic concepts and terms used but left undefined in this paper can be found in [2].

2 Notations

(i) E denotes the set of all idempotents of N.

(e in N is called an idempotent if $e^2 = e$)

(ii) L denotes the set of all nilpotents of N.

(a in N is nilpotent if $a^k = 0$ for some positive integer k.)

(iii) $N_0 = \{n \in N / n0 = 0\}$ - zero-symmetric part of N.

(iv) $N_d = \{n \in N / n(x+y) = nx+ny$ for all x, y in $N\}$ - set of all distributive element of N.

(v) $C(N) = \{n \in N / nx = xn$ for all x in $N\}$ - centre of N.

3 Preliminary Results

We freely make use of the following results and designate them as $R(1)$, $R(2)$,... etc.

$R(1)$ N is subdirectly irreducible if and only if the intersection of any family of non-zero ideals of N is again non-zero (Theorem 1.60, p.25 of [2]).

$R(2)$ N has no non-zero nilpotent elements if and only if $x^2 = 0 \Rightarrow x = 0$ for all x in N (Problem 14, p.9 of [3]).

$R(3)$ If f is a mate function for N, then for every x in N, $xf(x)$, $f(x)x \in E$ and $N x = N f(x)x$, $x N = x f(x)N$ (Lemma 3.2 of [4]).

$R(4)$ If $L = \{0\}$ and $N = N_0$, then (i) $xy = 0 \Rightarrow yx = 0$ for all x, y in N.

(ii) N has Insertion of factors property- IFP for short- i.e for x, y in N, $xy = 0 \Rightarrow xny = 0$ for all n in N. If N satisfies (i) and (ii) then N is said to have $(*, IFP)$ (Lemma 2.3 of [4]).

$R(5)$ Any Pseudo commutative near-ring with a right identity is weak commutative (i.e. $xyz = yzx$ for all x, y, z in N [2]) (Proposition 2.9 of [5]).

$R(6)$ A zero-symmetric near-ring N is a near-field if $N_d \neq \{0\}$ and for all $n \in N-\{0\}$, $Nn = N$ (Theorem 8.3, p.249 of [2]).
4 Definition of β_1 Near-Rings and Examples

In this section we define β_1 near-rings and give certain examples of this new concept.

Definition 4.1 Let N be a right near-ring. If for every x, y in N, $xNy = Nxy$ then we say N is a β_1 near-ring.

Example 4.2 (a) The near-ring $(N, +, \cdot)$ defined on the Klein's four group $N = \{0, a, b, c\}$ where multiplication is defined as per scheme 4, p.408, Pilz[2].

\[
\begin{array}{c|cccc}
 & 0 & a & b & c \\
\hline
 0 & 0 & 0 & 0 & 0 \\
 a & 0 & 0 & a & a \\
 b & 0 & a & c & b \\
 c & 0 & a & b & c \\
\end{array}
\]

is a β_1 near-ring. It is worth noting that this near-ring does not admit mate functions.

(b) The near-ring $(N, +, \cdot)$ where $(N, +)$ is the group of integers modulo 5 and multiplication defined as per scheme 6, p.408, Pilz [2] is not a β_1 near-ring.

\[
\begin{array}{c|cccc}
 & 0 & 1 & 2 & 3 & 4 \\
\hline
 0 & 0 & 0 & 0 & 0 & 0 \\
 1 & 0 & 0 & 4 & 1 & 0 \\
 2 & 0 & 0 & 3 & 2 & 0 \\
 3 & 0 & 0 & 2 & 3 & 0 \\
 4 & 0 & 0 & 1 & 4 & 0 \\
\end{array}
\]

since $2N2 \neq N22$.

(c) The near-ring $(N, +, \cdot)$ where $(N, +)$ is the group of integers modulo 6 and multiplication defined as per scheme 36, p.409, Pilz [2].

\[
\begin{array}{c|cccc}
 & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 1 & 0 & 4 & 2 & 0 & 4 & 2 \\
 2 & 0 & 2 & 4 & 0 & 2 & 4 \\
 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
 4 & 0 & 4 & 2 & 0 & 4 & 2 \\
 5 & 0 & 2 & 4 & 0 & 2 & 4 \\
\end{array}
\]
is a zero-symmetric β_1 near-ring with no identity.

5 Properties of β_1 Near-Rings

In this section, we study some of the important properties of β_1 near-rings and give a complete characterization of such near-rings. We also obtain a structure theorem for β_1 near-rings.

Proposition 5.1 Let N be a β_1 near-ring. If N has identity 1, then N is zero-symmetric.

Proof Let N be a β_1 near-ring. Then for all x, y in N, $xNy = Nxy$. Putting $y = 1$, we get $xN1 = Nx1$ for all x in N. When $x = 0$, $0N = N0 = \{0\}$. It follows that N is zero-symmetric.

Remark 5.2 The converse of Proposition 5.1 is not valid. For example, the near-ring cited in Example 4.2 (c) is a zero-symmetric β_1 near-ring, but it has no identity.

Proposition 5.3 If N is a β_1 near-ring then $xNx = Nx^2$ for all x in N.

Proof When N is a β_1 near-ring, by definition, for all x, y in N, $xNy = Nxy$ (1). The result follows by replacing y by x in (1).

Remark 5.4 The converse of Proposition 5.3 is not true. For example, we consider the near-ring $(N, +, \cdot)$ where $(N, +)$ is the Klein’s four group $\{0, a, b, c\}$ and \cdot is defined as per scheme 8 p.408, Pilz[2].

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

satisfies the condition $xNx = Nx^2$ for all x in N. But it is not a β_1 near-ring [since $bNc \neq Nbc$].

Proposition 5.5 Every Pseudo commutative near-ring with identity is a β_1 near-ring.

Proof Let N be a Pseudo commutative near-ring.(1). Let $x, y \in N$.
If \(a \in xNy \), then there exists \(n \in N \) such that \(a = xny = ynx \) \(\text{[by (1)]} \). Therefore \(a \in Nxy \). Thus \(xNy \subseteq Nxy \)(2).

On the other hand, if \(b \in Nxy \), then for some \(n' \in N \), \(b = n'xy = n'yx \) \(\text{[by R(5)]} \). Consequently, \(Nxy \subseteq xNy \)(3).

Combining (2) and (3), we get \(N \) is a \(\beta_1 \) near-ring.

Proposition 5.6 Homomorphic image of a \(\beta_1 \) near-ring is also a \(\beta_1 \) near-ring.

Proof Straight forward.

Theorem 5.7 Every \(\beta_1 \) near-ring \(N \) is isomorphic to a subdirect product of subdirectly irreducible \(\beta_1 \) near-rings.

Proof By Theorem 1.62, p.26 of Pilz [2], \(N \) is isomorphic to a subdirect product of subdirectly irreducible near-rings \(N_i \)'s and each \(N_i \) is a homomorphic image of \(N \) under the projection map \(\pi_i \). The rest of the proof is taken care of by Proposition 5.6.

We furnish below a necessary and sufficient condition for a \(\beta_1 \) near-ring to admit mate functions.

Lemma 5.8 Let \(N \) be a \(\beta_1 \) near-ring. Then \(N \) admits mate functions if and only if \(x \in Nx^2 \) for all \(x \) in \(N \).

Proof We first observe from Proposition 5.3 that, since \(N \) is \(\beta_1 \), \(xNx = Nx^2 \) for all \(x \) in \(N \)(1). For the 'only if' part, let \(f \) be a mate function for \(N \). Then for all \(x \) in \(N \), \(x = xf(x)x \in xNx \). It follows that \(x \in Nx^2 \). For the 'if' part, let \(x \in Nx^2 \) for all \(x \) in \(N \). Appealing to (1) we get, \(x = xnx \) for some \(n \) in \(N \). By setting \(n = f(x) \), we see that \(f \) is a mate function for \(N \).

In the following results we assume that \(N \) has a mate function.

Theorem 5.9 Let \(N \) be a zero-symmetric \(\beta_1 \) near-ring with a mate function 'f'. Then we have,
(i) \(L = \{0\} \).
(ii) \(N \) has \((*, IFP) \)
(iii) \(E \subseteq C(N) \).

Proof (i) Since \(f \) is a mate function for \(N \), Lemma 5.6 demands that
$x \in Nx^2$ for all x in N. Therefore $x = nx^2$ for some n in N. Suppose $x^2 = 0$.
Clearly, then $x = 0$. Now, $R(2)$ guarantees that $L = \{0\}$.
(ii) By (i) $L = \{0\}$. Now, $R(4)$ guarantees that N has $(*, \text{IFP})$.
(iii) Let $e \in E$. Since N is β_1, $e Ne = Ne.e = Ne$. Therefore for any n in N,
e ne = ue \text{ and } ne = eve \text{ for some } u, v \text{ in } N. \text{ Now, } en = e(ue)$ and
e(ne) = eve. Thus $ene = ne$ for all n in N ...(1). We also have, $(ene - en)e = 0$
$\Rightarrow e(ene - en) = 0 \Rightarrow en(ene - en) = 0 \Rightarrow en(ene - en) = 0$ [by (ii)].
Consequently, $(ene - en)^2 = 0$ and (i) guarantees $ene - en = 0$. Therefore $ene = en$ for all n in N ...(2). From (1) and (2) we get, $en = ne$ for all n in N.
Thus $E \subset C(N)$.

We furnish below a characterization theorem for β_1 near-ring.

Theorem 5.10 Let N be a zero-symmetric near-ring with a mate function 'f'. Then N is β_1 if and only if $xN = Nx^2$ for all x in N and $E \subset C(N)$.

Proof For the ’only if’ part, first we observe that ”$E \subset C(N)$”(1).
follows from Theorem 5.8 (iii). Now, for any x in N, if $a \in Nx^2$, then
[since N is β_1] $a \in xNx \subset xN$. Therefore $Nx^2 \subset xN$(2).
On the other hand, if $b \in xN$, then for some n in N, $b = xn = xf(x)xn = (nf(x))x$
[by (1)] $\in xNx = Nx^2$ [since N is β_1]. Consequently, $xN \subset Nx^2$(3).
Combining (2) and (3) $xN = Nx^2$ for all x in N. For the ”if” part, first we
show that ’f’ is a P_3 mate function. For any $x \in N$ we have $x = xf(x)x$
$\in xN = Nx^2$ [by assumption]. Therefore $x = n_1x^2$ for some n_1 in N. And
$xf(x)x = nx.xf(x)x = f(x)xnx^2$ [Since $E \subset C(N)$] $= f(x)x^2$ \Rightarrow
$[xf(x) - f(x)x]x = 0 \Rightarrow x[xf(x) - f(x)x] = 0$ [by Theorem 5.9 (ii)] \Rightarrow
x$f(x)[xf(x) - f(x)x] = 0$ [by Theorem 5.9 (ii)] and $f(x)[xf(x) - f(x)x] = f(x).0 = 0$ [since $N = N_0$]. Consequently, $[xf(x) - f(x)x]^2 = 0$
and hence $xf(x) = f(x)x$ [by R(2)] (4). Hence f is a P_3 mate function. Now,
$Nx.y = [Nxy] = [Nf(x)x]y$ [by R(3)] $= [f(x)xN]y$ [since $E \subset C(N)$] $= [xf(x)N]y$
[by (4)] $= xNy$ [by R(3)]. Thus N is a β_1 near-ring.

With a view to establishing a structure theorem we prove the following theorem.

Theorem 5.11 Let N be a β_1 near-ring with a mate function f. Then N
is subdirectly irreducible if and only if N is a near-field.

Proof For the ’only if’ part, first we shall show that no non-zero idempotent of N
is a zero divisor. Let J be the set of all non-zero idempotents in N which are zero divisors. Let $I = \cap \{(0 : e)/e \in J\}$. Since
\(\beta_1\) near-rings

\(N\) is subdirectly irreducible, \(R(1)\) demands that \(I \neq \{0\}\). Let \(a \in I - \{0\}\). Then \(ae = 0\) for all \(e \in J\). (1). By Theorem 5.9 (ii), \(ea = 0 \Rightarrow ef(a)a = f(a)a \in J\). Therefore \(af(a)a = 0 [\text{by (1)}] \Rightarrow a = 0\) which is a contradiction to \(a \neq 0\). Consequently, no non-zero idempotent of \(N\) is a zero-divisor... (2).

Let \(M\) be any non-zero \(N\)-subgroup of \(N\) and let \(0 \neq x \in M\). Lemma 5.8 demands that \(x \in Nx^2\) for all \(n \in N\). Therefore, \(x = n'x^2\) for some \(n'\) in \(N\). Now, for all \(n \in N\), \(nx = nn'x^2 = n_1x^2 \Rightarrow (n - n_1)x = 0 \Rightarrow (n - n_1)f(x)x = 0 [\text{by Theorem 5.9 (ii)}]\). Now by (2), \(n - n_1x = 0 \Rightarrow n = n_1x \in NM \subset M\). Thus \(N \subset M\). Consequently, \(N\) has no non trivial \(N\)-subgroups ...(3). Let \(n \in N - \{0\}\). Then by (3), \(Nn = N\).

Now, by Theorem 5.9 (ii), \(E \subset C(N)\) and \(C(N) \subset N_d\). Therefore, \(N_d \neq \{0\}\). Thus \(N\) is a near-field. [by R(6)]. The proof of 'if' part is obvious.

We conclude our discussion by proving the following structure theorem.

Theorem 5.12 Let \(N\) be a \(\beta_1\) near-ring with a mate function. Then \(N\) is isomorphic to a subdirect product of near-fields.

Proof By Theorem 5.7, \(N\) is isomorphic to a subdirect product of subdirectly irreducible \(\beta_1\) near-rings \(N_i\)s. Since \(N\) has a mate function it follows that each \(N_i\) also has a mate function. The rest of the proof is taken care of by Theorem 5.11.

References

Received: November 11, 2013