Abstract

A group G is called smooth if its subgroup lattice $L(G)$ has a smooth chain, and we call G totally smooth if all maximal chains in $L(G)$ are smooth. We call G a minimal non-totally smooth group if G is not totally smooth with totally smooth proper subgroups. In this paper we determine all finite minimal non-totally smooth groups.

Mathematics Subject Classification: 20D30, 20E15

1. Introduction.
All groups considered in this article will be finite. We use conventional notions and notation as in Doerk, K. and Hawkes, T [1]. In addition, the maximal length of the subgroup lattice $L(G)$ of a group G will be denoted by n, and the set of distinct primes dividing the order of G will be denoted by
A maximal chain 1 = $G_0 < G_1 < G_2 < ... < G_n = G$ of subgroups of a group G is called smooth if the interval $[G_{i+j}/G_i] = [G_j/1]$ for all $i, j \in \mathbb{N}$ such that $i + j \leq n$. The group G is called smooth if it has a smooth chain. Finite smooth groups have been studied by Schmidt (see [5]). Hence, if all maximal chains of subgroups of G are smooth, G is called totally smooth.

Totally smooth groups have been studied by Elkholy (see [2]). We call G is a minimal non-totally smooth group if G is not totally smooth with its proper subgroups are totally smooth.

Recall that a P-group is a group lattice-isomorphic to an elementary abelian group (see [4], p. 49).

In this article we determine all finite minimal non-totally smooth groups. So we prove the following:

The main Theorem.

Suppose that G is a minimal non-totally smooth group with maximal length $n \geq 3$. Then one of the following holds:

(a) $n = 3$ and $|G| = p^3$.

(b) $n = 3$ and $|G| = p^2q$, where p and q are distinct primes.

(c) $n = 3$ and G is not abelian of order $p_1p_2p_3$, where p_1, p_2, and p_3 are distinct primes.

(d) $G = PQ$, where P is an elementary abelian normal Sylow p-subgroup and Q is cyclic of order q which operates irreducibly on P.

(e) $G = PQ$, where P is an elementary abelian normal Sylow p-subgroup of order p^q, Q is cyclic of order q^2 which operates irreducibly on P and $q | p - 1$.

Since every lattice of length at most 2 is totally smooth and we determine the structure of minimal non-totally smooth groups, it follows that the maximal length $n \geq 3$.

2. **Preliminaries**

In this part, we state the following lemmas which will be used to prove the main Theorem.

Lemma 1. A finite group G is totally smooth if and only if one of the following holds:
(a) G is cyclic of prime power order.

(b) G is a P-group.

(c) G is cyclic of square free order (See [2]; Theorem 1).

Lemma 2. Let p and q be different primes dividing $|G|$ such that $G = PQ$ where P is an elementary abelian normal subgroup of G of order $p^n (n \in \mathbb{N})$ and $Q = \langle x \rangle$ is a cyclic q-group. Then the following properties are equivalent:

(i) Every subgroup of Q is either irreducible on P or normalizes every subgroup of P.

(ii) One of the following holds:

(a) $G = P \times Q$ or x induces a power automorphism in P.

(b) $q | p - 1, |P| = p^n$, and x induces an automorphism of order q^{k+1} in P where k is the largest integer such that $q^k | p - 1$.

(c) $n = 2, q \nmid p^r - 1 (1 = r < n), q^m | p^n - 1$, and x induces an automorphism of order q^m in P ($m \in \mathbb{N}$) (see [6]; Lemma 3.1).

3. The proof of the main Theorem

The proof of the main Theorem will be included in Theorems A-C.

Theorem A. Suppose that G is a minimal non-totally smooth p-group with maximal length $n \geq 3$. Then $n = 3$ and $|G| = p^3$.

Proof. By Lemma 1, we get each proper subgroup of G is cyclic or elementary abelian. We have three cases:

Case 1. All the maximal subgroups of G are elementary abelian.

Thus G is nonabelian and $G^a \neq 1$. If M is any maximal subgroup of G, $|G/M| = p$ which implies that $G^a \leq M$ for each maximal subgroup M of G. We argue that $|G^a| = p$.

If not, then G^a contains a subgroup H of order p which is normal in G as $H \triangleleft M$. Since G/H is abelian, $G^a \leq H$, a contradiction. Thus $|G^a| = p$. Hence G/G^a would be of order p^2. Therefore $n = 3$ and $|G| = p^3$.

Case 2. All maximal subgroups are cyclic.

It follows that by [3, Sats 8.2, p. 310], G has exactly one subgroup of order p. Since G is not totally smooth, we get $n = 3$ and $|G| = p^3$.
Case 3. G has two different types of totally smooth maximal subgroup. So let M_1 be an elementary abelian maximal subgroup of G and M_2 be a cyclic maximal subgroup of G. Then $M_1 \cap M_2$ would be of order p and so G is of order p^3.

Now we can assume that $|G|$ is divisible by $m \geq 2$ different primes p_1, p_2, \ldots, p_m. First, we consider the case $m = 2$.

Theorem B. Suppose that G is a minimal non-totally smooth group with maximal length $n \geq 3$ such that $|G|$ is divisible by two different primes p and q. Then one of the following holds:

(a) $|G| = p^2q$.

(b) $G = PQ$, where P is an elementary abelian normal Sylow p-subgroup and Q is cyclic of order q which operates irreducibly on P.

(c) $G = PQ$, where P is an elementary abelian normal Sylow p-subgroup of order p^9, Q is cyclic of order q^2 which operates irreducibly on P and $q \mid p - 1$.

Proof. Clearly, G is solvable and hence G has a minimal normal subgroup N which is elementary abelian. Let P be a Sylow p-subgroup of G and Q be a Sylow q-subgroup of G. Suppose that $N \leq P$.

Assume that $N = P$. If $|Q| = q$, we are done and (b) holds. So suppose that $|Q| > q$ and let Q_1 be a maximal subgroup of Q. By hypothesis and Lemma 1, PQ_1 is cyclic of order pq or a nonabelian P-group with $p > q$ as $P \trianglelefteq PQ_1$. If $|PQ_1| = pq$, $|G|$ would be of order pq^2 and (a) holds. Therefore PQ_1 is a nonabelian P-group. Since P is minimal normal subgroup of G, Q operates irreducibly on P and $Q_1 \leq N_G(P)$ and hence $q \mid p - 1$. Then by Lemma 2, $|P| = p^9$ and (c) holds.

Thus $N < P$ and our hypothesis show that NQ is a totally smooth proper subgroup of G. By Lemma 1, NQ is cyclic of order pq or a nonabelian P-group. Suppose first that NQ is a nonabelian P-group. It follows that $|Q| = q$ and hence $P \trianglelefteq G$. We claim that $|N| = p$. If not, there exists a normal subgroup N_1 of NQ. Since P is totally smooth, we have by Lemma 1 that P is cyclic or elementary abelian which implies that $N_1 \trianglelefteq P$. Therefore, $N_1 \trianglelefteq G$ which contradicts the minimality of N. Thus $|N| = p$.

If P is cyclic, there is a maximal normal subgroup of P such that $P_1 \trianglelefteq G$. Thus P_1Q is totally smooth and hence P_1 would be of order p. Therefore, $|G| = p^2q$ and we are done. So P is elementary abelian. Since G is a minimal non-totally smooth group, NQ is a totally smooth proper subgroup of G. By Lemma 1, NQ is cyclic of order pq or a nonabelian P-group. Suppose first that NQ is a nonabelian P-group. It follows that $|Q| = q$ and hence $P \trianglelefteq G$. We claim that $|N| = p$. If not, there exists a normal subgroup N_1 of NQ. Since P is totally smooth, we have by Lemma 1 that P is cyclic or elementary abelian which implies that $N_1 \trianglelefteq P$. Therefore, $N_1 \trianglelefteq G$ which contradicts the minimality of N. Thus $|N| = p$.

If P is cyclic, there is a maximal normal subgroup of P such that $P_1 \trianglelefteq G$. Thus P_1Q is totally smooth and hence P_1 would be of order p. Therefore, $|G| = p^2q$ and we are done. So P is elementary abelian. Since G is a minimal non-totally smooth group, NQ is a totally smooth proper subgroup of G. By Lemma 1, NQ is cyclic of order pq or a nonabelian P-group. Suppose first that NQ is a nonabelian P-group. It follows that $|Q| = q$ and hence $P \trianglelefteq G$. We claim that $|N| = p$. If not, there exists a normal subgroup N_1 of NQ. Since P is totally smooth, we have by Lemma 1 that P is cyclic or elementary abelian which implies that $N_1 \trianglelefteq P$. Therefore, $N_1 \trianglelefteq G$ which contradicts the minimality of N. Thus $|N| = p$.

If P is cyclic, there is a maximal normal subgroup of P such that $P_1 \trianglelefteq G$. Thus P_1Q is totally smooth and hence P_1 would be of order p. Therefore, $|G| = p^2q$ and we are done. So P is elementary abelian. Since G is a minimal non-totally smooth group, NQ is a totally smooth proper subgroup of G. By Lemma 1, NQ is cyclic of order pq or a nonabelian P-group. Suppose first that NQ is a nonabelian P-group. It follows that $|Q| = q$ and hence $P \trianglelefteq G$. We claim that $|N| = p$. If not, there exists a normal subgroup N_1 of NQ. Since P is totally smooth, we have by Lemma 1 that P is cyclic or elementary abelian which implies that $N_1 \trianglelefteq P$. Therefore, $N_1 \trianglelefteq G$ which contradicts the minimality of N. Thus $|N| = p$.
smooth group, \(Q \) centralizes some subgroup \(H \) of \(P \). Hence \(HQ \) is cyclic of order \(pq \) by hypothesis. Thus \(|P| = p^2\) and so \(|G| = p^2q\).

To complete the proof, let \(NQ \) be a cyclic group of order \(pq \).

If \(Q \triangleleft G \), then by Lemma 1 \(P_1Q \) is maximal totally smooth subgroup of \(G \) where \(P_1 \) is a maximal subgroup of \(P \). Thus \(|P_1| = p\) and \(|G| = p^2q\). Hence \(Q \) is not normal in \(G \).

If \(P \) would not be normal in \(G \), then \(P = \text{N}_G(P) \). By Burnside’s theorem \(Q \triangleleft G \), a contradiction. Thus \(P \triangleleft G \). Clearly, if \(P \) is cyclic, then \(n = 3 \) and \(|G| = p^2q\). Therefore \(P \) is elementary abelian. If \(|P| > p^2\), there exists a proper subgroup \(L \) of \(P \) containing \(N \) such that \(L \triangleleft G \). Clearly, \(LQ \) is a totally smooth subgroup of \(G \). Since \(Q \) centralizes \(N \), \([LQ/1]\) is not smooth. Then \(N \) would be a maximal subgroup of \(P \). Once again \(|G| = p^2q\). This completes our proof.

Now we consider the case that \(G \) is solvable and \(|G|\) is divisible by at least three different primes.

Theorem C. Suppose that \(G \) is a minimal non totally smooth group with maximal length \(n \geq 3 \) and \(|\pi(G)| \geq 3 \). Then \(n = 3 \) and \(|G| = p_1p_2p_3\).

Proof. If \(n = 3 \) and since \(G \) is a minimal non-totally smooth group, we get \(G \) would be not cyclic of order \(p_1p_2p_3 \) and we are done.

Consider \(n \geq 4 \) and \(G \) of order \(p_1, p_2, ..., p_r \) with \(r \geq 3 \). From the solvability of \(G \), \(G \) has a sylow basis and hence \(P_iP_j \) is a totally smooth subgroup of \(G \); \(i, j = 1, 2, ..., r \). By Lemma 1, \(P_iP_j \) is cyclic of order \(p_ip_j \) or a nonabelian \(P \)-group. If \(P_iP_j \) is cyclic for all \(i, j = 1, 2, ..., r \), then every sylow subgroup of \(G \) is of prime order. Since \(n \geq 4 \), there exits \(k \in 1, 2, ..., r \) with \(i \neq k \neq j \) such that \(P_iP_jP_k \) is totally smooth subgroup of \(G \) which cyclic. Then \([P_i, P_j] = 1\) for each \(i, j = 1, 2, ..., r \) which implies that \(G \) is cyclic; a contradiction since \(G \) is not totally smooth. Thus \(P_iP_j \) is a nonabelian \(P \)-group for some \(i, j = 1, 2, ..., r \).

Suppose for a contradiction, that \(|P_i| \geq p_i^2\) for some \(i = 1, 2, ..., r \). It follows that \(P_i \) has a normal subgroup \(L \) of \(G \). Since \(LP_jP_k < G \) and \(LP_j \) is a nonabelian \(P \)-group so \([LP_jP_k/1]\) is not smooth which contradicts our hypothesis. Thus \(|P_i| = p_i\) for each \(i = 1, 2, ..., r \). Hence \(G \) would be of order \(p_1p_2p_3 \) and \(n = 3 \), a contradiction since \(n \geq 4 \). This final contradiction complete our proof.
References

Received: May 11, 2013