Fuzzy Medial Ideals Characterized by its Intuitionistic

Amany M. Menshawy

Abstract

We consider the Intuitionistic fuzzification of the concept medial ideals, the image (preimage) of fuzzy medial ideals in BCI-algebra, and investigate some of their properties. We introduce the notion of product of intuitionistic fuzzy medial ideals in BCI-algebras, and investigate some related properties.

Keywords: medial BCI-algebras, fuzzy medial ideals in BCI-algebras, intuitionistic fuzzy medial ideals, intuitionistic fuzzy image (preimage) of medial ideals

1 Introduction

The concept of fuzzy subset and various operations on it were first introduced by Zadeh in [8]. Since then, several researches were conducted on the generalizations of the notion of fuzzy sets. The idea of “intuitionistic fuzzy set” was first published by Atanassov [1, 2] as a generalization of the notion of fuzzy set. In [6] J.Meng and Y.B.Jun studied medial BCI-algebras. In [7] S.M.Mostafa, Y.B.Jun and Amany Elmenshawy introduce the notion of medial ideals in BCI-algebras, they state the fuzzification of medial ideals and investigates its properties. In this paper, we introduce the notion of intuitionistic fuzzy medial ideals in BCI-algebras and fuzzy intuitionistic image (preimage) of medial ideals in BCI-algebras.
We also introduce the product of two intuitionistic fuzzy medial ideals in medial BCI-algebras and investigate some results.

2 Preliminaries

An algebraic system \((X, *, 0)\) of type \((2, 0)\) is called a BCI-algebra if it satisfies the following conditions:

- \((\text{BCI-1})\) \(((x * y) * (x * z)) * (y * x) = 0,\)
- \((\text{BCI-2})\) \((x * (x * y)) * y = 0,\)
- \((\text{BCI-3})\) \(x * x = 0,\)
- \((\text{BCI-4})\) \(x * y = 0\) and \(y * x = 0\) imply \(x = y.\)

For all \(x, y,\) and \(z \in X.\) In a BCI-algebra \(X,\) we can define a partial ordering”\(\leq\)” by \(x \leq y\) if and only if \(x * y = 0.\) In what follows, \(X\) will denote a BCI-algebra unless otherwise specified.

A BCI-algebra \(X\) is called a medial BCI-algebra if it satisfies the following condition: \((x * y) * (z * u) = (x * z) * (y * u)\) for all \(x, y, z\) and \(u \in X.\)

In a medial BCI-algebra \(X,\) the following holds for all \(x, y, z \in X:\)

1. \(x * (y * z) = z * (x * y),\)
2. \(x * (x * y) = y,\)
3. \(0 * (y * x) = x * y.\)

Definition 2.1. A non empty subset \(S\) of a medial BCI-algebra \(X\) is said to be medial subalgebra of \(X,\) if \(x * y \in S,\) for all \(x, y \in S.\)

Definition 2.2 [3]. A non-empty subset \(I\) of a BCI-algebra \(X\) is said to be a BCI-ideal of \(X\) if it satisfies:

1. \((I_1)\) \(0 \in I,\)
2. \((I_2)\) \(x * y \in I\) and \(y \in I\) implies \(x \in I\) for all \(x, y \in X.\)

Definition 2.3 [7]. A non empty subset \(M\) of a BCI-algebra \(X\) is said to be a medial ideal of \(X\) if it satisfies:

1. \((M_1)\) \(0 \in M,\)
2. \((M_2)\) \(z * (y * x) \in M\) and \(y * z \in M\) imply \(x \in M\) for all \(x, y \in X.\)

Proposition 2.4 [7]. Any medial ideal of a BCI-algebra must be a BCI-ideal but the converse is not true.

Lemma 2.5. Any BCI-ideal of a medial BCI-algebra is a medial ideal.

Proof. Clear.
Example 2.6 [7]. Let \(X = \{0, 1, 2, 3, 4, 5\} \) be a set with a binary operation \(* \) defined by the following table:

\[
\begin{array}{cccccc}
* & 0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 & 0 & 4 \\
1 & 0 & 1 & 0 & 1 & 4 \\
2 & 2 & 2 & 0 & 0 & 4 \\
3 & 3 & 2 & 2 & 1 & 4 \\
4 & 4 & 4 & 4 & 4 & 0 \\
5 & 5 & 4 & 5 & 4 & 1 \\
\end{array}
\]

Then \((X, *, 0) \) is a BCI-algebra and \(A = \{0, 1, 2, 3\} \) is a medial-ideal of \(X \).

3. Fuzzy medial ideals

Definition 3.1 [5]. Let \(X \) be a BCI-algebra. A fuzzy set \(\mu \) in \(X \) is called a fuzzy BCI-ideal of \(X \) if it satisfies:

(FI1) \(\mu(0) \geq \mu(x) \),

(FI2) \(\mu(x) \geq \min\{\mu(x * y), \mu(y)\} \), for all \(x, y \) and \(z \in X \).

Definition 3.2 [7]. Let \(X \) be a BCI-algebra. A fuzzy set \(\mu \) in \(X \) is called a fuzzy medial ideal of \(X \) if it satisfies:

(FM1) \(\mu(0) \geq \mu(x) \),

(FM2) \(\mu(x) \geq \min\{\mu(z * (y * x)), \mu(y * z)\} \), for all \(x, y \) and \(z \in X \).

Lemma 3.3. Any fuzzy medial-ideal of a BCI-algebra is a fuzzy BCI-ideal of \(X \).

Proof. Clear.

4. Intuitionistic fuzzy medial ideals in BCI-algebras

An Intuitionistic fuzzy set (briefly IFS) \(A \) in a nonempty set \(X \) is an object having the form \(A = \{(x, \mu_A(x), \lambda_A(x)) | x \in X\} \), where the function \(\mu_A : X \rightarrow [0,1] \), \(\lambda_A : X \rightarrow [0,1] \) denote the degree of membership, degree of non membership, respectively and \(0 \leq \mu_A(x) + \lambda_A(x) \leq 1 \), for all \(x \in X \).

An IFS \(A = \{(x, \mu_A(x), \lambda_A(x)) | x \in X\} \) in \(X \) can be identified to an order pair \((\mu_A, \lambda_A)\) in \(I^X \times I^X \).

We shall use the symbol \(A = (\mu_A, \lambda_A) \) for IFS \(A = \{(x, \mu_A(x), \lambda_A(x)) | x \in X\} \).
Definition 4.1. An IFS \((\mu, \lambda) \) in a BCI-algebra \(X \) is called an intuitionistic fuzzy medial subalgebra of \(X \) if it satisfies the following:

(IFMS1) \(\mu_*(x \ast y) \geq \mu(x), \mu(y) \),

(IFMS2) \(\lambda_*(x \ast y) \leq \max\{\lambda_*(x), \lambda_*(y)\} \), for all \(x, y \in X \).

Example 4.2. Let \(X = \{0, 1, 2, 3, 4, 5\} \) as in example 2.6, and \((\mu, \lambda) \) be an IFS in \(X \) defined by \(\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = 0.3 < 0.7 = \mu_0 \), and \(\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = 0.5 > 0.2 = \lambda_0 \). Then \((\mu, \lambda) \) is an intuitionistic fuzzy medial subalgebra of \(X \).

Lemma 4.3. Every intuitionistic fuzzy medial subalgebra \((\mu, \lambda) \) of \(X \) satisfies the inequalities \(\mu_*(0) \geq \mu_*(x) \), and \(\lambda_*(0) \leq \lambda_*(x) \) for all \(x \in X \).

Proof. Clear.

Definition 4.4[4]. An IFS \((\mu, \lambda) \) in \(X \) is called an intuitionistic fuzzy ideal of \(X \) if it satisfies the following inequalities:

(IFI1) \(\mu_*(0) \geq \mu_*(x) \) and \(\lambda_*(0) \leq \lambda_*(x) \)

(IFI2) \(\mu_*(x) \geq \min\{\mu_*(x \ast y), \mu_*(y)\} \),

(IFI3) \(\lambda_*(x) \leq \max\{\lambda_*(x \ast y), \lambda_*(y)\} \), for all \(x, y \in X \).

Definition 4.5. An IFS \((\mu, \lambda) \) in \(X \) is called an intuitionistic fuzzy medial ideal of \(X \) if it satisfies the following inequalities:

(IFM1) \(\mu_*(0) \geq \mu_*(x) \) and \(\lambda_*(0) \leq \lambda_*(x) \)

(IFM2) \(\mu_*(x) \geq \min\{\mu_*(z \ast (y \ast x), \mu_*(y \ast z))\} \),

(IFM3) \(\lambda_*(x) \leq \max\{\lambda_*(z \ast (y \ast x), \lambda_*(y \ast z))\} \), for all \(x, y, z \in X \).

Example 4.6: Let \(X = \{0, 1, 2, 3\} \) be a set with a binary operation \(\ast \) define by the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Define IFS \((\mu, \lambda) \) in \(X \) as follows \(\mu_*(0) = \mu_*(1) = 1, \mu_*(2) = \mu_*(3) = t \).

\(\lambda_*(0) = \lambda_*(1) = 0, \lambda_*(2) = \lambda_*(3) = s \). Where \(t, s \in [0, 1], t + s \leq 1 \). By routine calculations we can prove that \((\mu, \lambda) \) is an intuitionistic fuzzy medial ideal of \(X \).
Lemma 4.7. Let $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy medial ideal of X. If $x \leq y$ in X, then $\mu_A(x) \geq \mu_A(y)$, $\lambda_A(x) \leq \lambda_A(y)$, for all $x, y \in X$. That is μ_A is order reserving and λ_A is order preserving.

Proof. Let $x, y \in X$ be such that $x \leq y$, then $x * y = 0$. From (IFM2), we have,

$$
\mu_A(x) \geq \min\{\mu_A(0 * (y * x)), \mu_A(y * 0)\} = \min\{\mu_A((x * y), \mu_A(y)\}
$$

$$
= \min\{\mu_A(0), \mu_A(y)\} = \mu_A(y).
$$

Similarly, from (IFM3), we have $\lambda_A(x) \leq \max\{\lambda_A(0 * (y * x)), \lambda_A(y * 0)\}$, hence, $\lambda_A(x) \leq \max\{\lambda_A(x * y), \lambda_A(y)\} = \max\{\lambda_A(0), \lambda_A(y)\} = \lambda_A(y)$.

Lemma 4.8. Let $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy medial ideal of X. If the inequality $z \leq x$ holds in X, then $\mu_A(x) \geq \min\{\mu_A(y), \mu_A(z)\}$, $\lambda_A(x) \leq \max\{\lambda_A(y), \lambda_A(z)\}$, for all $x, y, z \in X$.

Proof. Let $x, y, z \in X$ be such that $x * y \leq z$. Thus, put $z = 0$ in (IFM2) and using lemma 4.7, we get

$$
\mu_A(x) \geq \min\{\mu_A(0 * (y * x)), \mu_A(y * 0)\} = \min\{\mu_A(x * y), \mu_A(y)\} \geq \min\{\mu_A(z), \mu_A(y)\}.
$$

Similarly for $\lambda_A(x)$.

Theorem 4.9. Every intuitionistic fuzzy medial ideal of X is an intuitionistic fuzzy medial subalgebra of X.

Proof. Let $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy medial ideal of X. Since $x * y \leq x$, for all $x, y \in X$, then $\mu_A(x * y) \geq \mu_A(x)$, $\lambda_A(x * y) \leq \lambda_A(x)$.

Put $z = 0$ in (IFM2), (IFM3), we have,

$$
\mu_A(x * y) \geq \mu_A(x) \geq \min\{\mu_A(0 * (y * x)), \mu_A(y * 0)\} = \min\{\mu_A(x * y), \mu_A(y)\}
$$

$$
\geq \min\{\mu_A(z), \mu_A(y)\}.
$$

Similarly for $\lambda_A(x)$. Then $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy subalgebra of X.

The converse of theorem 4.9 may not be true. For example, the intuitionistic fuzzy subalgebra $A = (\mu_A, \lambda_A)$ in example 4.2 is not an intuitionistic fuzzy medial ideal of X since $\mu_A(1) = 0.3 < 0.7 = \min\{\mu_A(4 * (4*1)), \mu_A(4*4)\}$.

Theorem 4.10. Let $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy medial subalgebra of X such that $x * y \leq z$ for all $x, y, z \in X$. Then $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy medial ideal of X.

Proof. Let $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy medial subalgebra of X. Recall that $\mu_A(0) \geq \mu_A(x)$ and $\lambda_A(0) \leq \lambda_A(x)$, for all $x \in X$. Since, for all $x, y, z \in X$, we have $x * (z * (y * x)) = (y * x) * (z * x) \leq y * z$, it follows from lemma 4.8 that $\mu_A(x) \geq \min\{\mu_A((z * (y * x)), \mu_A(y * z)\}$, $\lambda_A(x) \leq \max\{\lambda_A((z * (y * x)), \lambda_A(y * z)\}$.

Hence $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy medial ideal of X.

Fuzzy medial ideals

Theorem 4.9. Every intuitionistic fuzzy medial ideal of X is an intuitionistic fuzzy medial subalgebra of X.
Definition 4.11: For any \(t \in [0,1] \) and a fuzzy set \(\mu \) in a nonempty set \(X \), the set \(U(\mu, t) := \{ x \in X \mid \mu(x) \geq t \} \) is called an upper \(t \)-level cut of \(\mu \), and the set \(L(\mu, t) := \{ x \in X \mid \mu(x) \leq t \} \) is called a lower \(t \)-level cut of \(\mu \).

Theorem 4.12: An IFS \(\langle \mu, \lambda \rangle \) is an intuitionistic fuzzy medial ideal of \(X \) if and only if for all \(s, t \in [0,1] \), the set \(U(\mu, s, a) \) and \(L(\lambda, s, a) \) are either empty or medial ideals of \(X \).

Proof. Straightforward.

5. Homomorphisms of medial BCI-algebras

Let \((X, *, 0) \) and \((Y, *, 0') \) be BCI-algebras. A mapping \(f : X \to Y \) is said to be a homomorphism if \(f(x * y) = f(x)' * f(y) \) for all \(x, y \in X \). Note that if \(f : X \to Y \) is a homomorphism of BCI-algebras, then \(f(0) = 0' \). Let \(f : X \to Y \) be a homomorphism of medial BCI-algebras. For any IFS \(\langle \mu, \lambda \rangle \) in \(Y \), define an IFS \(\langle \mu', \lambda' \rangle \) in \(X \) by \(\mu'(x) := \mu(f(x)) \), and \(\lambda'(x) := \lambda(f(x)) \) for all \(x \in X \).

Theorem 5.1. Let \(f : X \to Y \) be a homomorphism of BCI-algebras. If an IFS \(\langle \mu, \lambda \rangle \) in \(Y \) is an intuitionistic fuzzy medial ideal of \(Y \), then an IFS \(\langle \mu', \lambda' \rangle \) in \(X \) is an intuitionistic fuzzy medial ideal in \(X \).

Proof. For all \(x, y, z \in X \), we have \(\mu'(x) \leq \mu(f(0)) = \mu'(0) \), and \(\lambda'(x) \geq \lambda(f(0)) = \lambda'(0) \).

Theorem 5.2: Let \(f : X \to Y \) be an epimorphism of BCI-algebras and let \(\langle \mu, \lambda \rangle \) be an IFS in \(X \). If \(\langle \mu', \lambda' \rangle \) is an intuitionistic fuzzy medial ideal of \(X \), then \(\langle \mu, \lambda \rangle \) is an intuitionistic fuzzy medial ideal in \(Y \).

Proof. For any \(a \in Y \), there exists \(x \in X \) such that \(f(x) = a \). Then

\[
\mu'(a) = \mu(f(x)) = \mu'(x) \leq \mu'(0) = \mu(f(0)) = \mu(0),
\]

\[
\lambda'(a) = \lambda(f(x)) = \lambda'(x) \geq \lambda'(0) = \lambda(f(0)) = \lambda(0).
\]

Let \(a, b, c \in Y \), there exists \(x, y, z \in X \) such that \(f(x) = a, f(y) = b, f(z) = c \). It follows that
μₐ(a) = μₐ(f(x)) = μₐ(x) ≥ min{μₐ(z * (y * x)), μₐ(y * z)}
= min{μₐ(f(z * (y * x))), μₐ(f(y * z))} = min{μₐ(f(z) * f(y * x)), μₐ(f(y) * f(z))}
= min{μₐ(f(z) * f(y) * f(x)), μₐ(f(y) * f(z))} = min{μₐ(c * (b * a)), μₐ(b * c)}.

Similarly, λₐ(a) ≤ max{λₐ(c * (b * a)), λₐ(b * c)}. This completes the proof.

6. Cartesian product of intuitionistic fuzzy medial ideals

Let μ and λ be two fuzzy sets in the set X. The product λ × μ : X × X → [0,1] is defined by (λ × μ)(x, y) = min{λ(x), μ(y)}, for all x, y ∈ X.

Let A = (X, λₐ, μₐ) and B = (X, λᵦ, μᵦ) be two IFS of X, the Cartesian product A × B = (X × X, μₐ × μᵦ, λₐ × λᵦ) is defined by μₐ × μᵦ(x, y) = min{μₐ(x), μᵦ(y)} and λₐ × λᵦ(x, y) = max{λₐ(x), λᵦ(y)}, where μₐ × μᵦ : X × X → [0,1], for all x, y ∈ X.

Remark 6.1: Let X and Y be medial BCI-algebras, we define* on X × Y by, for every (x, y), (u, v) ∈ X × Y, (x, y) * (u, v) = (x * u, y * v). Clearly (X × Y; *, (0,0)) is a medial BCI-algebra.

Proposition 6.2: Let A = (X, λₐ, μₐ), B = (X, λᵦ, μᵦ) be intuitionistic fuzzy medial ideals of X, then A × B is intuitionistic fuzzy medial ideal of X × X.

Proof. μₐ × μᵦ(0,0) = min{μₐ(0), μᵦ(0)} ≥ min{μₐ(x), μᵦ(y)} = μₐ × μᵦ(x, y), for all x, y ∈ X.

And λₐ × λᵦ(0,0) = max{λₐ(0), λᵦ(0)} ≤ max{λₐ(x), λᵦ(y)} = λₐ × λᵦ(x, y), for all x, y ∈ X. Now let (x₁, x₂), (y₁, y₂), (z₁, z₂) ∈ X × X, then

min{μₐ × μᵦ((z₁, z₂) * ((y₁, y₂) * (x₁, x₂))}, μₐ × μᵦ((y₁, y₂) * (z₁, z₂))

= min{μₐ × μᵦ(μₐ(z₁ × (y₁ * x₁)), μₐ(z₂ × (y₂ * x₂)))}, μₐ × μᵦ(μᵦ(y₁ × z₁), μᵦ(y₂ × z₂))

= min{μₐ(z₁ × (y₁ * x₁)), μᵦ(z₂ × (y₂ * x₂))}, μₐ(y₁ × z₁), μᵦ(y₂ × z₂)

≤ min{μₐ(z₁ × (y₁ * x₁)), μᵦ(z₂ × (y₂ * x₂))}, μᵦ(y₁ × z₁), μᵦ(y₂ × z₂)

≤ min{μₐ(z₁ × (y₁ * x₁)), μᵦ(z₂ × (y₂ * x₂))}, min{μᵦ(y₁ × z₁), μᵦ(y₂ × z₂)}

≤ min{μₐ(z₁ × (y₁ * x₁)), μᵦ(z₂ × (y₂ * x₂))}, μᵦ(y₁ × z₁), μᵦ(y₂ × z₂)

≤ min{μₐ(z₁ × (y₁ * x₁)), μᵦ(z₂ × (y₂ * x₂))}, μᵦ(y₁ × z₁), μᵦ(y₂ × z₂)

Similarly we can prove that,

max{λₐ × λᵦ(μₐ(z₁ × (y₁ * x₁)), μᵦ(z₂ × (y₂ * x₂))}, λᵦ(y₁ × z₁), λᵦ(y₂ × z₂)} ≥

(λₐ × λᵦ(x₁, x₂)). This completes the proof.

Definition 6.3: Let A = (X, λₐ, μₐ) and B = (X, λᵦ, μᵦ) be IFS of a BCI-algebra X. for s, t ∈ [0,1] the set U(μₐ × μᵦ, s) := {(x, y) ∈ X × X | (μₐ × μᵦ)(x, y) ≥ s} is called upper s-level of (μₐ × μᵦ)(x, y) and the set
Amany M. Menshawy

Theorem 6.4: The intuitionistic fuzzy sets \(A = (X, \lambda_A, \mu_A) \) and \(B = (X, \lambda_B, \mu_B) \) are intuitionistic fuzzy medial ideals of \(X \) if and only if the non-empty set upper \(s \)-level cut \(U(\mu_A \times \mu_B, s) \) and the non-empty lower \(t \)-level cut \(L(\lambda_A \times \lambda_B, t) \) are medial ideals of \(X \times X \) for all \(s, t \in [0,1] \).

Proof. Let \(A = (X, \lambda_A, \mu_A) \) and \(B = (X, \lambda_B, \mu_B) \) be intuitionistic fuzzy medial ideals of \(X \), therefore for any \((x,y) \in X \times X \), we have
\[
\mu_A \times \mu_B(0,0) = \min\{\mu_A(0), \mu_B(0)\} \geq \min\{\mu_A(x), \mu_B(y)\} = \mu_A \times \mu_B(x,y).
\]
Let \((x_1, x_2), (y_1, y_2), (z_1, z_2) \in X \times X \) and \(s \in [0,1] \), such that
\[
((z_1, z_2) \ast ((y_1, y_2) \ast (x_1, x_2))) \in U(\mu_A \times \mu_B, s), \quad \text{and} \quad (y_1, y_2) \ast (z_1, z_2) \in U(\mu_A \times \mu_B, s).
\]
Now \((\mu_A \times \mu_B)(x_1, x_2) \)
\[
\geq \min\{\mu_A \ast \mu_B((z_1, z_2) \ast ((y_1, y_2) \ast (x_1, x_2))), (\mu_A \ast \mu_B)((y_1, y_2) \ast (z_1, z_2))\}
\]
\[
= \min\{\mu_A \ast \mu_B((z_1, z_2) \ast (y_1 \ast x_1, y_2 \ast x_2)), (\mu_A \ast \mu_B)((y_1 \ast z_1, y_2 \ast z_2))\}
\]
\[
= \min\{\mu_A \ast \mu_B((z_1 \ast (y_1 \ast x_1), z_2 \ast (y_2 \ast x_2)), (\mu_A \ast \mu_B)((y_1 \ast z_1, y_2 \ast z_2))\} \geq \min\{s, s\} = s,
\]
Therefore \((x_1, x_2) \in U((\mu_A \times \mu_B)(x,y), s) \) is a medial ideal of \(X \times X \). Similar to above \(L((\lambda_A \times \lambda_B)(x,y), t) \) is a medial ideal of \(X \times X \). This completes the proof.

References

Received: May 8, 2013