Noether Numbers via Jordan Blocks in the Theory of Modular Vector Invariants

Uğur Madran

Izmir University of Economics
Department of Mathematics
Balçova, 35330 Izmir, Turkey
ugur.madran@ieu.edu.tr, madran@member.ams.org

Abstract. Let G be a finite group acting on a vector space V over a field F where the characteristic of the field divides the group order. The polynomial invariants of the diagonal action of G on $\bigoplus_m V$ is known to be unbounded when $m \to \infty$. In this note, we express a lower bound for the β-number in terms of Jordan decomposition of an element of order $p = \text{char } F$.

Mathematics Subject Classification: Primary 13A50

Keywords: Invariant theory, Noether number, Jordan blocks, vector invariants

1. Introduction

Let G be finite group and $\rho : G \to \text{GL}(V)$ be a faithful representation where V is an n-dimensional vector space over a field F of characteristic p, such that p divides the group order. For any positive integer m, G acts diagonally on the polynomial ring

$$F[\bigoplus_m V] = F[x_{i,1}, \ldots, x_{1,n}, \ldots, x_{m,1}, \ldots, x_{m,n}]$$

by algebra automorphisms given by

$$
\begin{bmatrix}
 g \cdot x_{i,1} \\
 g \cdot x_{i,2} \\
 \vdots \\
 g \cdot x_{i,n}
\end{bmatrix} =
\begin{bmatrix}
 g_{1,1} & g_{1,2} & \cdots & g_{1,n} \\
 g_{2,1} & g_{2,2} & \cdots & g_{2,n} \\
 \vdots & \vdots & \ddots & \vdots \\
 g_{n,1} & g_{n,2} & \cdots & g_{n,n}
\end{bmatrix}
\begin{bmatrix}
 x_{i,1} \\
 x_{i,2} \\
 \vdots \\
 x_{i,n}
\end{bmatrix}
$$

by
for all $1 \leq i \leq m$, where $\rho(g) = [g_{i,j}] \in \text{GL}(n, \mathbb{F}) \simeq \text{GL}(V)$. The ring of vector invariants is defined as

$$\mathbb{F}[\oplus_m V]^G = \{ f \in \mathbb{F}[\oplus_m V] \mid g \cdot f = f \forall g \in G \}.$$

The ring of invariants is known to be a finitely generated algebra, due to a result of Noether ([10]). One of the main objects in the study of polynomial invariants is the so-called Noether number or β-number, which is defined as the maximum degree of a polynomial in a minimal generating set. In the nonmodular case, i.e., when the order of G is invertible in \mathbb{F}, then $\beta(\mathbb{F}[V]^G) \leq |G|$ by a well-known result of Noether ([9]) in characteristic zero, which was extended to the positive characteristic by Fleischmann ([4]) and Fogarty ([5]). We direct the reader to excellent books [1], [3], [8] for a detailed introduction to the theory.

In the modular case, i.e., when the characteristic of the field divides the order of the group, Richman proved in [11] that

$$\beta(\mathbb{F}[\oplus_m V]^G) \geq \max\{2, \frac{m}{n-1}, \frac{m}{|G|-1}, \frac{p}{p-1} \cdot \frac{m}{n}\};$$

(1)

when \mathbb{F} is the prime field.

Our aim, in this paper, is to refine this lower bound by using Jordan decomposition of an element of order p. More precisely, if an element of order p in G is represented by a matrix whose Jordan canonical form consists of s blocks of elementary Jordan matrices such that $r \leq s$ of them are nontrivial, then

$$\beta(\mathbb{F}[\oplus_m V]^G) \geq \frac{m-s+r}{n-s};$$

(2)

1.1. Notation. For the convenience of the reader, we will mostly use the notations of [7]. Throughout this paper, \mathbb{F} will denote the prime field of characteristic p and moreover, we will identify G with its image $\rho(G)$ in $\text{GL}(n, \mathbb{F})$.

The indeterminates of the polynomial ring $\mathbb{F}[\oplus_m V]$ correspond to elements of the dual basis, i.e., $\{x_{i,1}, \ldots, x_{i,n}\}$ is a basis of V^* corresponding to the dual space of the i-th copy of V in $\oplus_m V$.

2. JORDAN BLOCK

Let $g \in G \leq \text{GL}(n, \mathbb{F})$ be a matrix of order p. Since, $(g-1)^p = g^p - 1 = 0$, the Jordan canonical form of g can be given as

$$\begin{bmatrix}
J_1 \\
J_2 \\
\vdots \\
J_s
\end{bmatrix}$$
where J_i’s are elementary Jordan matrices of order $n_i \times n_i$

\[
J_i = \begin{bmatrix}
1 & 1 & 0 & \ldots & 0 \\
0 & 1 & 1 & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \ldots & 1 & 1 \\
0 & 0 & \ldots & 0 & 1
\end{bmatrix}
\]

such that $p \geq n_1 \geq n_2 \geq \cdots \geq n_r > n_{r+1} = \cdots = n_s = 1$. The size of the largest elementary block cannot exceed p since $g \in G$ is chosen to be an element of order p.

Without loss of generality, by changing basis elements, we may assume that

\[
g = \begin{bmatrix}
J_1 \\
J_2 \\
\vdots \\
J_s
\end{bmatrix}
\]

and hence we can explicitly state invariant variables. For the sake of simplicity of the notations, we define the following index sets which depend on the Jordan decomposition above.

Let $\mathcal{I} = \{1, 2, \ldots, m\}$ and $\mathcal{J} = \{1, 2, \ldots, n\}$ be index sets. For $1 \leq j \leq s$, define

\[
\nu_j = \sum_{k \leq j} n_k
\]

with the convention $\nu_0 = 0$, and then set

\[
\mathcal{J}_0 = \{\nu_r + 1, \nu_r + 2, \ldots, n\},
\]

\[
\mathcal{J}_1 = \{1, n_1 + 1 = \nu_1 + 1, \nu_2 + 1, \ldots, \nu_{r-1} + 1\},
\]

\[
\mathcal{J}_2 = \{n_1 = \nu_1, \nu_2, \ldots, \nu_r\}.
\]

Note that $\mathcal{I} \times (\mathcal{J}_0 \cup \mathcal{J}_2)$ lists all invariant variables. Moreover, the first partition of a set, \mathcal{J}_0, lists invariant variables which may split off, i.e.,

\[
\mathbb{F}[x_{i,j} \mid i \in \mathcal{I}, j \in \mathcal{J}]^P = \mathbb{F}[x_{i,j} \mid i \in \mathcal{I}, j \notin \mathcal{J}_0]^P \otimes \mathbb{F}[x_{i,j} \mid i \in \mathcal{I}, j \in \mathcal{J}_0].
\]

where $P = \langle g \rangle$ is the cyclic group of order p generated by g.

3. Leading Terms

We say that a variable $x_{i,j} \prec x_{k,l}$ if $(i, j) > (k, l)$ lexicographically, and we will extend the ordering \prec to monomials by considering the graded lexicographical order induced by \prec. More precisely, the ordering is induced by:

\[
x_{1,1} \succ x_{1,2} \succ \cdots \succ x_{1,n} \succ x_{2,1} \succ x_{2,2} \succ \cdots \succ x_{m,n}.
\]

The leading monomial of a polynomial f will be denoted by $\text{LM}(f)$. The term ordering defined above is compatible with the action of g in the sense that $\text{LM}(f) \succeq \text{LM}(g(f))$. We direct the reader to [2] for a detailed discussion of monomial orders.
Proposition 1. Let $f \in \mathbb{F}[x_{1,1}, \ldots, x_{m,n}]^P$. If the degree of f with respect to each vector $(x_{1,1}, \ldots, x_{i,n})$ is at most $p - 1$, and $f \not\in \mathbb{F}[x_{i,j} \mid i \in \mathcal{I}, j \in \mathcal{J}_0 \cup \mathcal{J}_2]$ then there exists (i_0, j_0) such that x_{i_0,j_0} divides $\text{LM}(f)$ and $j_0 \in \mathcal{J}_2$.

Proof. Suppose for contradiction that none of the $x_{i,j}$ for $1 \leq i \leq n$, and $j \in \mathcal{J}_2$ divide $\text{LM}(f)$. Let x_{i,j_1} be the smallest variable dividing $\text{LM}(f)$ with respect to monomial order given. Consider the monomial

$$w = \frac{\text{LM}(f)}{x_{i_1,j_1}} \cdot x_{i_1,j_1+1}.$$

Note that $g \cdot (x_{i_1,j_1}) = x_{i_1,j_1} + x_{i_1,j_1+1}$ as $j_1 \notin \mathcal{J}_2$ and also note that there does not exist any monomial u satisfying $\text{LM}(f) \preceq u \preceq w$ (since we consider graded lexicographical order, $\deg u$ is equal to $\deg \text{LM}(f) = \deg w$).

We will show that the coefficient of w in the polynomial $f - g \cdot f$ is not zero, and get a contradiction to the fact that f is invariant and $f - g \cdot f = 0$. But this is straightforward since the coefficient of w in the expansion of $f - g \cdot f$ is $\deg_{(i_1,j_1)} \text{LM}(f)$ by construction and as stated in the hypothesis that this degree is at most $p - 1$, i.e., is nonzero. This completes the proof. \hfill \Box

4. Main Result

Theorem 2. Let G be a group acting on an n-dimensional vector space V over a prime field \mathbb{F} with p elements. Suppose p divides the group order $|G|$, and let g be an element G of order p. Then,

$$\beta(\mathbb{F}[\oplus_m V]^G) > \frac{m - s + r}{n - s}$$

for $m \geq n$ where r is the number of nontrivial Jordan blocks of g and s is the total number of Jordan blocks of g.

To prove the theorem, we need the following universal invariant from our previous result [7]. We include it here in full for the convenience of the reader.

For $m \geq n$ define the following auxiliary polynomial:

$$f_0 = \sum_{(\alpha_1, \ldots, \alpha_n) \in \mathbb{F}^n} (\alpha_1 x_{1,1} + \cdots + \alpha_n x_{1,n})^{p-1} \cdots (\alpha_1 x_{m,1} + \cdots + \alpha_n x_{m,n})^{p-1}$$

where the sum is over all possible n-tuples $(\alpha_1, \ldots, \alpha_n)$. The polynomial f_0 is known to be an invariant of the full linear group and hence, $f_0 \in \mathbb{F}[\oplus_m V]^G$ for any G.

Definition 3. For a given nonzero monomial $u = \prod x_{i,j}^{e_{i,j}}$ and a nonempty index set $S \subset \mathcal{I} \times \mathcal{J} = \{(1,1), \ldots, (m,n)\}$, define S-degree of u as

$$\sum_{(i,j) \in S} e_{i,j}$$

and denote it by $\deg_S u$. Note that $\deg_S u \leq \deg u$. For simplicity, we also write $\deg_S u$ to denote the $\deg_{\mathcal{I} \times S} u$ for $S \subset \mathcal{J}$.
Lemma 4 ([7, Lemma 3]).

\[LM(f_0) = x_{1,1}^{p-1} \cdots x_{m-n+1,1}^{p-1} \cdots x_{m-n+j,1}^{p-1} \cdots x_{m,n}^{p-1} \]

Proof. First, we claim that the monomial

\[u = x_{1,1}^{p-1} \cdots x_{m-n+1,1}^{p-1} \cdots x_{m-n+j,1}^{p-1} \cdots x_{m,n}^{p-1} \]

appears in the expansion of \(f_0 \). Note that the coefficient of \(u \) in \(f_0 \) is

\[\sum_{(\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n} \alpha_1^{p-1} \cdots \alpha_n^{p-1} \]

which is equal to \((-1)^m \neq 0\). Hence the claim is true.

Next, we will show that any monomial \(v \) for which \(v \not\succeq u \) holds does not appear in the expansion of \(f_0 \). If \(\deg_{(i) \times J} v \neq p - 1 \) for some \(1 \leq i \leq m \) then \(v \) clearly does not appear in \(f_0 \) by (5). So, we can assume that \(\deg_{(i) \times J} v = p - 1 \) for all \(i \). Note that, as \(v \not\succeq u \) and \(\deg_{(i,1)}(v) = p - 1 \) for all \(1 \leq i \leq m - n + 1 \), we have the same for \(v \), i.e., \(x_{1,1}^{p-1} \cdots x_{m-n+1,1}^{p-1} \) divides \(v \). Moreover, there exists \(j \geq 1 \) such that \(x_{1,1}^{p-1} \cdots x_{m-n+1,1}^{p-1} \cdots x_{m-n+j,1}^{p-1} \cdots x_{m,n}^{p-1} \mid v \) but \(x_{m-n+j,1}^{p-1} \cdots x_{m,n}^{p-1} \mid v \) for some \(k < j + 1 \). But then, \(\deg_{(j+1,1, \ldots, n)}(v) < (p - 1)(n - j) \) which implies that there exists \(j + 1 \leq \ell \leq n \) for which \(\deg_{(\ell)}(v) < (p - 1) \) holds. Hence, the coefficient of \(v \) in the expansion of \(f_0 \) cannot be nonzero, and the lemma follows. \(\square \)

Lemma 5. If \(\nu_1 \geq 3 \), then we have among all monomials greater than \(LM(f_0) \) which have the same degree with respect to each block of variables

\[\max \{ \deg_{J_2} u \mid u \not\succeq LM(f), \deg u = \deg f_0, \deg_{\text{block}} u = \deg_{\text{block}} f_0 \} \]

\[= (\nu_r - r)(p - 1) - 1 \]

where \(\deg_{\text{block}} \) stands for \(\deg_{(i) \times \{\nu_j, \nu_j+1, \nu_j+2, \ldots, \nu_{j+1}\}} \) for each \(1 \leq i \leq n \) and \(0 \leq j \leq s - 1 \).

Proof. Note that, as \(\deg_{(i) \times J_1} LM(f_0) = (m - n + r)(p - 1) \) and \(\deg_{\text{block}} u = \deg_{\text{block}} f_0 \), we should have \(\deg_{(i) \times J_1} u \geq (m - n + r)(p - 1) \) for any \(u \not\succeq f_0 \). Hence, \(\deg_{J_2} u \leq m(p - 1) - (m - n + r)(p - 1) - (s - r)(p - 1) \) with an equality only when there are no other variables except those \(x_{i,j} \) such that \(i \in I \) and \(j \in J_0 \cup J_1 \cup J_2 \). But this is not possible when \(\nu \geq 3 \).

Consider the monomial

\[u = x_{1,1}^{p-1} \cdots x_{m-n+1,1}^{p-1} \cdots x_{m-n+j,1}^{p-1} \cdots x_{m,n}^{p-1} \]

which we obtain from \(LM(f_0) \) first by multiplying with \(x_{m-n+2,1}^{p-1} \) (note that \(x_{m-n+2,2} \) divides \(LM(f_0) \)) and then pushing all variables which do not belong to class \(J_0 \cup J_1 \cup J_2 \) to variables of class \(J_2 \) contained in the same block.

Notice that \(\deg_{J_2} u = m(p - 1) - (m - n + r)(p - 1) - (s - r)(p - 1) - 1 = (n - s)(p - 1) - 1 = (\nu_r - r)(p - 1) - 1 \) that finishes the proof. \(\square \)
Remark 6. The case $\nu_1 = 2$ has been studied with a more sharp result in [7].

Proof of Theorem 2. Let

$$f_0 = \sum \alpha_{a_1, \ldots, a_\ell} h_1^{a_1} \cdots h_\ell^{a_\ell}; \quad \alpha \in \mathbb{F}, a_i \in \mathbb{N}_0, h_i \in \mathbb{F}[\oplus_m V]^P$$

be a decomposition of f_0 where h_i are among the generators of the invariant ring $\mathbb{F}[\oplus_m V]^P$. Note that as $\text{LM}(f_0)$ appear with a nonzero coefficient on the left hand side of the equation, it should also appear on the right hand side. Hence, there exist an exponent sequence a_1, \ldots, a_ℓ such that $\alpha_{a_1, \ldots, a_\ell}$ is not zero and $\text{LM}(f_0)$ appears as a monomial in the expansion of $h_1^{a_1} \cdots h_\ell^{a_\ell}$.

Moreover, as $\text{LM}(h_1^{a_1} \cdots h_\ell^{a_\ell}) \geq \text{LM}(f_0)$ we can apply previous lemma to get a bound on $a_1 + \cdots + a_\ell$. By Lemma 5, $\deg_{J_2} \text{LM}(h_1^{a_1} \cdots h_\ell^{a_\ell}) \leq (\nu_r - r)(p - 1) - 1$.

Now our first observation gives the required bound: By Proposition 1, $\deg_{J_2} h_i \geq 1$ for all $1 \leq i \leq \ell$, and thus we should have $a_1 + \cdots + a_\ell \leq (\nu_r - r)(p - 1) - 1$.

We will combine this bound with the result of Proposition 1 of [7] to finish the proof. Note that we get the bound

\[\beta(\mathbb{F}[\oplus_m V]^G) \geq \frac{(m - (s - r))(p - 1)}{(\nu_r - r)(p - 1) - 1} \text{ by splitting off } s - r \text{ variables} \]

\[\geq \frac{(m - s + r)(p - 1)}{(\nu_r - r)(p - 1) - 1} = \frac{(m - s + r)(p - 1)}{(n - s)(p - 1) - 1} \quad \text{as } \nu_r - r = \nu_s - s = n - s \]

\[> \frac{(m - s + r)(p - 1)}{(n - s)(p - 1)} \]

\[= \frac{m - s + r}{n - s} \quad (9) \]

5. Comparing previous results

Note that the bound given above extends Richman’s bound as

\[\beta(\mathbb{F}[\oplus_m V]^G) > \frac{m - s + r}{n - s} \]

\[\geq \frac{m}{n - r} \quad \text{since } m > n \text{ and } s - r \geq 0. \]

For small n where $n \leq p$, we may have only one nontrivial Jordan block and no trivial Jordan block, i.e., $r = s = 1$. Thus, the above bound gives

\[\beta(\mathbb{F}[\oplus_m V]^G) > \frac{m}{n - r} = \frac{m}{n - 1}. \]

In general, we have more than 1 block and we obtain the following bound

\[\beta(\mathbb{F}[\oplus_m V]^G) > \frac{m}{n - r} \geq \frac{m}{n - \frac{n}{p}} = \frac{m}{n(1 - \frac{1}{p})} = \frac{p}{p - 1} \frac{m}{n}. \]
Noether numbers via Jordan blocks

where we used the fact that when $s = r$ we have $r \geq n/p$. The last extreme case might be the case where $r = 1$ and $s = n - p + 1$. In that case, we get the bound

$$\beta(G) > \frac{m - s + r}{n - s} = \frac{m - n + p}{p - 1}.$$

Recall the previous result of Richman given in equation (1), we obtain here better and more dynamic results in general.

ACKNOWLEDGEMENTS

This note is a part of author’s Ph. D. thesis at Bilkent University and a continuation of his paper [7]. The author also thanks the anonymous referee for helpful comments.

REFERENCES

Received: February 1, 2013