On P-semihereditary Rings

Fatima Cheniour

Department of Mathematics, Faculty of Science and Technology of Fez
Box 2202, University S. M. Ben Abdellah Fez, Morocco
cheniourfatima@yahoo.fr

Copyright © 2013 Fatima Cheniour. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we introduce the notion of “P-semihereditary rings” which is a generalization of the notion of semihereditary rings. We establish the transfer of this notion to trivial ring extensions and provide a class of P-semihereditary rings which are not a semihereditary rings.

Mathematics Subject Classification: 16S50

Keywords: P-semihereditary rings, semihereditary rings, trivial ring extensions

1 Introduction

All rings considered below are commutative with unit and all modules are unital. Recall that a ring R is called semihereditary if every finitely generated ideal I of R is projective. Recall that a semihereditary integral domain is a Prüfer domain. We introduce a new concept of a ”P-semihereditary” ring. A ring R is called P-semihereditary if every finitely generated prime ideal P of R is projective. A semihereditary ring is naturally a P-semihereditary ring.

Let A be a ring, E be an A-module and $R := A \ltimes E$ be the set of pairs (a, e) with pairwise addition and multiplication given by: $(a, e)(b, f) = (ab, af + be)$. R is called the trivial ring extension of A by E. Recall that a prime ideal of R has always the form $Q \ltimes E$, where Q is a prime ideal of A [4, Theorem 25.1]. Considerable work, part of it summarized in Glaz’s book [3] and Huckaba’s
book [4], has been concerned with trivial ring extensions. These have proven to be useful in solving many open problems and conjectures for various contexts in (commutative and non-commutative) ring theory. See for instance [3, 4, 6].

Our aim in this paper is to prove that P-semihereditary rings are not semihereditary rings, in general. Further, we investigate the possible transfer of the P-semihereditary property to various trivial extension constructions and homomorphic image.

2 Main Results

In this section, we study the possible transfer of the P-semihereditary property to various trivial extension contexts and homomorphic image. First, we examine the context of trivial ring extensions of a ring A by a divisible flat A-module E.

Theorem 2.1 Let A be a ring, E be a divisible flat A-module, and $R := A \propto E$ be the trivial ring extension of A by E. Then:
1) R is a P-semihereditary ring if and only if so is A.
2) R is a never semihereditary ring.

We need the following lemma before proving Theorem 2.1. An R-module M is called P-flat if, for any $(s, x) \in R \times M$ such that $sx := 0$, $x \in (0 : s)M$. If M is flat, then M is naturally P-flat. In the domain case P-flat is equivalent to torsion-free and when R is an arithmetical ring (i.e., the lattice formed by its ideals is distributive), then any P-flat module is flat (by [2, p. 236]). Also, every P-flat cyclic module is flat (by [2, Proposition 1(2)]).

Lemma 2.2 Let A be a ring, E be an A-module, $F(\neq 0)$ be a sub-module of E such that $Z(F) \neq 0$ and $R := A \propto E$ be a trivial ring extension of A by E. Then $0 \propto F$ is not a P-flat R-module.

Proof. Let $(0, f) (\neq (0, 0))$ and $(0, e) (\neq (0, 0))$ two elements of $(0 \propto F)$. Then, $(0, f)(0, e) := (0, 0)$ and $(0 : (0, e)) := (0 \propto E)$ since $Z(F) = 0$. Then $(0, f) \notin (0 : (0, e))(0 \propto F) := (0 \propto E)(0 \propto F) := 0$. Thus $0 \propto F$ is not a P-flat R-module.
Proof of Theorem 2.1.
1) Assume that R is a P-semihereditary ring and let $Q := \sum_{i=1}^{n} Ab_i$ be a nonzero finitely generated prime ideal of A, where $b_i \in Q$ for each $i = 1, \ldots, n$. Set $P := Q \propto E$. Then, $P \in \text{Spec}(R)$ by [4, Theorem 25.1] and $P = \sum_{i=1}^{n} R(b_i, 0)$ since E is a divisible A-module. Hence, P is a projective ideal of R and so Q is a projective ideal of A since $P \otimes_R (R/(O \propto E)) = P/P(O \propto E) = (Q \propto E)/(0 \propto E) \cong Q$, as desired.

Conversely, assume that A is a P-semihereditary ring and let $P := \sum_{i=1}^{n} R(b_i, e_i)$ be a nonzero finitely generated prime ideal of R, where $(b_i, e_i) \in P$ for each $i = 1, \ldots, n$. Then P has the form $P := Q \propto E$ by [4, Theorem 25.1], where Q is a prime ideal of A. Since $0 \propto E$ is not a finitely generated ideal of R (since E is not finitely generated A-modules), then $Q \neq 0$. But $Q = \sum_{i=1}^{n} Ab_i$ which is a nonzero finitely generated prime ideal of A, so Q is a projective ideal of A since A is a P-semihereditary ring. Therefore, $P(\cong Q \otimes R)$ is a projective ideal of R which means that R is a P-semihereditary ring, as desired.

2) Let $F(\neq 0)$ be a finitely generated sub-module of E, such that $Z(F) = 0$ and $I = 0 \propto F$ be a finitely generated ideal of R. Then is not a projective ideal of R by Lemma 2.2. Therefore, R is not semihereditary and this completes the proof of Theorem 2.1.

Corollary 2.3 Let A be a domain, $K = qf(A)$, E be a K-vector space, and $R := A \propto E$ be the trivial ring extension of A by E. Then:
1) R is a P-semihereditary ring if and only if so is A.
2) R is a never semihereditary ring.

Now, we are able to construct a non-semihereditary ring which is a P-semihereditary ring.

Example 2.4 Let A be a Prüfer domain (for example, a polynomial ring in one indeterminate over any field), $K := qf(A)$, E be a K-vector space, and let $R = A \propto E$. Then:
1) R is a P-semihereditary ring by Theorem 2.1 since A is it too.
2) R is not a semihereditary ring by Theorem 2.1.

Next, we explore a different context; namely, the trivial ring extension of a local domain (A, M) by an A-module E such that $ME = 0$.

Theorem 2.5 Let (A, M) be a local ring, $E(\neq 0)$ an A-module with $ME = 0$, and let $R := A \propto E$ be the trivial ring extension of A by E. Then:
1) \(R \) is a \(P \)-semihereditary ring if and only if \(E \) is an \((A/M)\)-vector space of infinite rank.

2) \(R \) is never a semihereditary ring.

We need the following Lemma before proving Theorem 2.5.

\textbf{Lemma 2.6} Let \((A, M)\) be a local ring, \(E(\neq 0) \) an \(A \)-module with \(ME = 0 \) and let \(R := A \times E \) be the trivial ring extension of \(A \) by \(E \). Then, \(R \) is a \(P \)-semihereditary ring provided \(E \) is an \((A/M)\)-vector space of infinite rank.

\textbf{Proof.} Assume that \(E \) is an \((A/M)\)-vector space of infinite rank. Our aim is to show that there exists no proper finitely generated prime ideal of \(R \). Deny. Let \(Q := P \times E = \sum_{i=1}^{n} R(a_i, e_i) \) be a finitely generated prime ideal of \(R \), where \((a_i, e_i) \in Q\) for each \(i = 1, \ldots, n \). Hence, \(E = \sum_{i=1}^{n} Ae_i \) since \(a_iE = 0 \) (since \(a_i \in M \) for each \(i = 1, \ldots, n \), a contradiction since \(E \) is an \((A/M)\)-vector space of infinite rank. Therefore, \(R \) is a \(P \)-semihereditary ring, as desired.

\textbf{Proof of Theorem 2.5.}

1) If \(E \) is an \((A/M)\)-vector space of infinite rank, then \(R \) is a \(P \)-semihereditary ring by Lemma 2.6. Conversely, assume that \(R \) is a \(P \)-semihereditary ring. We claim that \(E \) is an \((A/M)\)-vector space of infinite rank. Deny. Then \(E \) is an \((A/M)\)-vector space of finite rank and let \((x_i)_{i=1}^{m} \) be its basis. Then \(P := 0 \times E = \sum_{i=1}^{m} R(0, x_i) \) is a proper finitely generated prime ideal of \(R \), thus \(P(= R(0, x)) \) for some regular element \((0, x) \in R \) since \(P \) is projective (since \(P \)-semihereditary) and \(R \) is a local ring, a contradiction since \((0, x)(0, x) = (0, 0)\). Hence, \(E \) is an \((A/M)\)-vector space of infinite rank, as desired.

2) We claim that \(R \) is never a semihereditary ring. Deny. Let \(e \in E - \{0\} \), and set \(J := R(0, e) \). Then, \(J \) is a generated by regular element since \(R \) is a local semihereditary ring, a contradiction since \((0, e)J = 0\). Hence, \(R \) is never a semihereditary ring.

\textbf{Remark 2.7} In Theorem 2.5, the surprise is that the \(P \)-semihereditary property holds for a trivial ring extension of a local ring \((A, M)\) by an \((A/M)\)-vector space without any hypothesis on the basic ring \(A \).
Now, we are able to construct a non-semihereditary ring which is a P-semihereditary ring.

Example 2.8 Let (A,M) be a local domain, $E(\neq 0)$ an (A/M)-vector space of infinite rank and let $R := A \otimes E$ be the trivial ring extension of A by E. Then:
1) R is a P-semihereditary ring by Theorem 2.5.
3) R is not a semihereditary ring by Theorem 2.5.

We close this section with a result establish the transfer of P-semihereditary property to a particular homomorphic image.

Proposition 2.9 Let R be a ring and let I be a finitely generated pure ideal of R. Then, R/I is a P-semihereditary ring, if so is R.

Proof of Proposition 2.9.
Let P be a finitely generated prime ideal of R/I, then there exist a prime ideal p of R containing I, such that $P = p/I$. Since I and P are finitely generated R-modules, then p is finitely generated prime ideal of R. Hence p is projective ideal of R and so $(p \otimes R/I)$ is projective R/I-module. On the other hand $(p \otimes R/I) = p/pI = p/I = P$ since I is pure ideal of R. Therefore R/I is P-semihereditary.

References

Received: April 9, 2013