A Brief Statement on the Absolute-valued
Algebras with One-sided Unit

O. Diankha

Département de Mathématiques et Informatique
Faculté des Sciences et Techniques
Université Cheikh Anta Diop, Dakar, Sénégal
oumar.diankha@ucad.edu.sn

A. Diouf and A. Rochdi

Département de Mathématiques et Informatique
Faculté des Sciences Ben M’Sik
Université Hassan II-Mohammedia
7955 Casablanca, Morocco
abdellatifro@yahoo.fr

Abstract. We note that every absolute-valued algebra having both left-unit and a non-zero central element is finite-dimensional, next we specify.

Mathematics Subject Classification: 17A35, 17A36

Keywords: Absolute-valued algebras, Left-unit, central element

1. Introduction

Absolute-valued algebras (AVA) with left-unit have been extensively studied. Classified in finite dimension [A 47], [Ram 99], [Roc 03], [Rod 04], [CDD 10] and their existence happen in arbitrary infinite dimension [Cu 92], [Rod 92], [EP 97]. A constructive method for obtaining all infinite-dimensional AVA with left-unit is also given [Rod 92, Theorem 2], [Rod 04, Theorem 3.6].
Other studies on AVA with left-unit have emerged recently. The finiteness of the dimension happen if some additional condition is assumed, as minor identities [CR 08], [DRR 11] or existence of a non-zero central element [BM 11].

The objective of the present paper is to provide a classification of all AVA A with left-unit whenever the existence of non-zero central element a is assumed. We briefly establish the finiteness of the dimension in two distinct ways. First (Proposition 3) by using a classical theorem by Albert-Urbanik-Wright [A 49, Theorem 2], [UW 60, Theorem 1] asserting that \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O} are the only AVA with two-sided unit, and [Rod 92, Remark 4. i]), then (Proposition 4) noting that the element a satisfies to $aA = Aa = A$ and using [Rod 92, Proposition 4], [Rod 04, Theorem 2.2]. Next, using [Roc 03, Th. 4.3], [Rod 04, Proposition 1.8], we give a classification. The list obtained is reduced to \mathbb{R}, \mathbb{C}, and the algebras A_a where A stands for either \mathbb{H} or \mathbb{O}, a being norm-one in A, with real part positive, and A_a denotes the AVA obtained by endowing the normed space of A with the product $x \circ y := (ax\bar{x})y$. Moreover, given norm-one $a, b \in A$ with real parts positive, the algebras A_a and A_b are isomorphic if and only if a and b have the same real parts.

Our work is an extension of Albert-Urbanik-Wright’s theorem. It improves [BM 11] and simplifies the content by avoiding tedious calculations.

2. Notations

An algebra is a vector space A over the field \mathbb{R} of real numbers endowed with a product, that is a bilinear mapping $(x, y) \mapsto xy$ from $A \times A$ to A. An algebra is said to be alternative if it satisfies the identities $x^2y = x(xy)$ and $(yx)x = yx^2$. Absolute-valued algebras are defined as those algebras A satisfying $||xy|| = ||x|| \cdot ||y||$ for a given norm $||.||$ on A, and all $x, y \in A$.

Let A be one of main AVA \mathbb{R}, \mathbb{C}, \mathbb{H} (quaternions), \mathbb{O} (octonions), with two-sided unit 1 and standard involution $\sigma_h : x \mapsto \bar{x}$. Its absolute value and the corresponding unit sphere are given, respectively, by $||x|| = \sqrt{xx}$ and $S(A) = \{x \in A : xx = 1\}$. The space A is a direct sum of its sub-spaces of scalars \mathbb{R}.1 and purely imaginary elements $\text{Im}(A) = \{x \in A : \bar{x} = -x\}$ which is also the orthogonal complement of \mathbb{R}.1 [HKR 91]. We denote by $\text{Aut}(A)$ the group of automorphisms of algebra A. Any non-zero sub-algebra of A contains 1 [S 54] and is invariant under σ_h. A well known theorem of Artin [ZSSS 82, Theorem 2.3.2] shows that for every x, y in the alternative algebra A, the set $\{x, y, \bar{x}, \bar{y}\}$ is contained in an associative subalgebra of A. This fact will be used in the sequel without further reference.
3. Absolute-valued algebras containing one sided-unit

Rodriguez [Rod 92, Remark 4. i], [Rod 04, Theorem 3.5] proved the following famous result:

Theorem 1. Let A be an absolute-valued algebra with left-unit e. Then the norm $|| \cdot ||$ of A comes from an inner product $\langle \cdot, \cdot \rangle$, and, for $x^* = 2\langle e, x \rangle e - x$, we have $\langle xy, z \rangle = \langle y, x^* z \rangle$ and $x^*(xy) = ||x||^2 y$ for all $x, y, z \in A$. ■

We also have $||x^*|| = ||x||$, $x \in A$, and it is easy to check the following:

(3.1) \[(x^*)^* = x, \ x \in A.\]

(3.2) \[x(x^*y) = ||x||^2 y, \ x, y \in A.\]

We have the well known result [Roc 03, Theorem 4.3], [Rod 04, Proposition 1.8]:

Theorem 2. The finite-dimensional absolute-valued algebras with a left unit are precisely those of the form A_φ, where A stands for either \mathbb{R}, \mathbb{C}, \mathbb{H} or \mathbb{O}, $\varphi : A \to A$ is a linear isometry fixing 1, and A_φ denotes the absolute-valued algebra obtained by endowing the normed space of A with the product $x \odot y := \varphi(x)y$. Moreover, given linear isometries $\varphi, \phi : A \to A$ fixing 1, the algebras A_φ and A_ϕ are isomorphic if and only if there exists an algebra automorphism ψ of A satisfying $\phi = \psi \circ \varphi \circ \psi^{-1}$. ■

Among above algebras we specify those having a non-zero central element:

Proposition 1. The following two statements are equivalent:

1. The algebra $A_\varphi = (A, \odot)$ contains a central element $a \in S(A)$,
2. The linear isometry $\varphi : A \to A$ is given by $\varphi(x) = axa$ for all $x \in A$.

Proof. (2) \Rightarrow (1). For every $x \in A$, we have:

\[x \odot a = \varphi(x)a = axa = ax = \varphi(a)x = a \odot x.\]

(1) \Rightarrow (2). For all $x \in A$, we have

\[a \odot x = x \odot a \Leftrightarrow \varphi(a)x = \varphi(x)a \Leftrightarrow \varphi(x) = \left(\varphi(a)x\right)\overline{a}.\]

For $x = 1$ this gives $\varphi(a) = a$. So $\varphi(x) = axa$ for all $x \in A$. ■
4. The result

In this last section A will be assumed to be an absolute-valued algebra containing both a left-unit e and a norm-one central element a. If A has dimension ≤ 2 then A possesses a two-sided unit, and is isomorphic to \mathbb{R} or \mathbb{C} according to Albert-Urbanik-Wright’s theorem. Subsequently we will focus on the case where A has dimension ≥ 4.

We start with:

Proposition 2. The sub-algebra $A(e, a)$ of A generated by $\{e, a\}$ has finite dimension ≤ 2 and is isomorphic to \mathbb{R} or \mathbb{C}.

Proof. By Theorem 1, we have $a^*a = a^*(ea) = a^*(ae) = e$. In other hand $a^*a = 2(e, a)a - a^2$, so a^2 belongs to the lineal space spanned by $\{e, a\}$. ■

We can now state the key result:

Proposition 3. Let A be an absolute-valued algebra containing both a left-unit e and a norm-one central element a. Then A is finite-dimensional.

Proof. The normed space of A endowed with the product $x \odot y = (a^*x)y$ is an absolute-valued algebra (A, \odot). In addition a is a two-sided unit for algebra (A, \odot). Indeed, for every x in A, we have:

$$a \odot x = (a^*a)x = x \quad \text{and} \quad x \odot a = (a^*x)a = a(a^*x)^{3.2} = x.$$

The result is then concluded by Albert-Urbanik-Wright’s theorem. ■

The previous result can be both refined and its proof shortened:

Proposition 4. Let A be an absolute-valued algebra containing elements e, a such that $eA = A$, $a \neq 0$, and $[a, A] = 0$. Then A is finite-dimensional.

Proof. Since $eA = A$ and $a \neq 0$, [Rod 92, Proposition 4] applies, so that $aA = A$. But, since $[a, A] = 0$, we have also $Aa = A$ and [Rod 04, Theorem 2.2] concludes. ■

The main result:

Theorem 3. Every absolute-valued algebra with both a left unit and a non-zero central element is finite-dimensional. Such an algebras are precisely \mathbb{R}, \mathbb{C}, or those of the form A_a, where A stands for either \mathbb{H} or \mathbb{O}, a being norm-one in A, with positive real part, and A_a denotes the absolute-valued algebra obtained by endowing the normed space of A with the product $x \odot y := (axa)y$. Moreover, given norm-one $a, b \in A$ with positive real parts, the algebras A_a and A_b are isomorphic if and only a and b have the same real part. The element a can be choosen in arbitrary copy of \mathbb{C} fixed in A.

Proof. The first assertion follows by Proposition 3 (or Proposition 4), algebras of dimension \(\leq 2 \) being either \(\mathbb{R} \) or \(\mathbb{C} \). The first statement of Theorem 2 and Proposition 1 assert that those algebras of dimensions 4 and 8 are of the form \(A_{c} \), \(A \) stands for either \(\mathbb{H} \) or \(\mathbb{O} \), \(\varphi_{c} : A \to A \) is the linear isometry given by \(\varphi_{c}(x) = cx \) for fixed \(c \in S(A) \) and all \(x \in A \), and \(A_{c} \) denotes the absolute-valued algebra obtained by endowing the normed space of \(A \) with the product \(x \odot y := \varphi_{c}(x)y \). We set \(A_{c} := A_{c} \), and we have \(A_{-c} = A_{c} \) so we can take positive the real part \(Re(c) \) of \(c \).

Let now \(a, b \) be in \(S(A) \) with \(Re(a), Re(b) \geq 0 \), using the second statement of Theorem 2, and that any automorphism of \(A \) fixed 1 and leaves invariant \(Im(A) \), we have:

\[
A_{a} \simeq A_{b} \iff \exists \Phi \in \text{Aut}(A) : \varphi_{a} = \Phi \circ \varphi_{a} \circ \Phi^{-1} \\
\iff \exists \Phi \in \text{Aut}(A) : bx = \Phi(a)x\Phi(\overline{a}) \text{ for all } x \in A \\
\iff \exists \Phi \in \text{Aut}(A) : bx = \Phi(a)x\Phi(a) \text{ for all } x \in A \\
\iff \exists \Phi \in \text{Aut}(A) : \Phi(a) \in S(\mathbb{R}) = \{1, -1\} \\
\iff \exists \Phi \in \text{Aut}(A) : b = \Phi(a) \text{ because } Re(a), Re(b) \geq 0 \\
\iff Re(b) = Re(a) \text{ by [Po 85, Lemme 1, pp. 269-270] .}
\]

Now, fix a norm-one \(u \) in \(Im(A) \) and denote by \(C \subset A \) the (unique) copy of \(\mathbb{C} \) containing \(u \). Let \(a \) be norm-one in \(A \) then \(a \) has an orthonormal decomposition \(Re(a) + \lambda v \) in \(A = \mathbb{R}.1 \oplus Im(A) \), so \(A_{a} \) is isomorphic to \(A_{b} \) where \(b = Re(a) + \lambda u \in C \). □

Acknowledgements. This paper has benefited from several remarks and suggestions by Professor Angel Rodríguez Palacios. The authors are very grateful to him.

References

[4] [CR 08] A. Chandid, and A. Rochdi, A survey on absolute valued algebras satisfying \((x^i, x^j, x^k) = 0\). Int. J. Algebra, 2 (2008), 837-852.
Classification of the absolute-valued algebras with left-unit satisfying \(x^2(x^2)^2 = (x^2)^2x^2 \). arXiv:1109.0239v1 [math.RA] 1 Sep 2011.

Received: October 4, 2013