Notes on a Problem on Weakly Exponential Δ-Semigroups

Attila Nagy

Department of Algebra
Mathematical Institute
Budapest University of Technology and Economics
1521 Budapest, Pf. 91, Hungary
nagyat@math.bme.hu

Abstract

Abstract. A semigroup S is called a weakly exponential semigroup if, for every couple $(a, b) \in S \times S$ and every positive integer n, there is a non-negative integer m such that $(ab)^{n+m} = a^n b^m = (ab)^m a^n b^n$. A semigroup S is called a Δ-semigroup if the lattice of all congruences of S is a chain with respect to inclusion. The weakly exponential Δ-semigroups were described in [5]. Although the existence of two types of them (T2R and T2L semigroups) is an open question, Theorem 3.11 of [5] gives necessary and sufficient conditions for a semigroup to be a T2R [T2L] semigroup. In our present paper we give a little correction of condition (v) of Theorem 3.11 of [5], and prove some new results which are addendum to the problem: Does there exist a T2R [T2L] semigroup?

Mathematics Subject Classification: 20M30

Keywords: weakly exponential semigroup, Δ-semigroup

1Research supported by the Hungarian NFSR grant No. K77476.
Introduction

A semigroup S is called a Δ-semigroup if the lattice of all congruences of S is a chain with respect to inclusion. In the literature of the semigroups, there are lots of papers and a book which deal with Δ-semigroups in special subclasses of the class of semigroups (see [1], [3] and [5] - [18]).

A semigroup S is called a weakly exponential semigroup if, for every couple $(a, b) \in S \times S$ and every positive integer n, there is a non-negative integer m such that $(ab)^{n+m} = a^n b^n (ab)^m = (ab)^m a^n b^n$ ([4]). The weakly exponential Δ-semigroups were examined in [5]. A Δ-semigroup S is called a $T_1 [T_{2R}, T_{2L}]$ semigroup if S is a semilattice of a non-trivial nil ideal S_0 and a subsemigroup S_1 which is a one-element semigroup [two-element right zero semigroup, two-element left zero semigroup]. It is clear that the $T_1 [T_{2R}, T_{2L}]$ semigroups are weakly exponential. In [5], it is proved that a semigroup is a weakly exponential Δ-semigroup if and only if it is isomorphic to one of the following semigroups: (1) G or G^0, where G is a subgroup of a quasicyclic p-group, p is a prime; (2) B or B^0 or B^1, where B is a two-element rectangular band; (3) a nil semigroup whose principal ideals are chain ordered by inclusion; (4) a T_1 semigroup or a T_{2R} semigroup or a T_{2L} semigroup.

Although the existence of $T_{2R} [T_{2L}]$ semigroups was not proved in [5], we characterized them in Theorem 3.11 of [5]. For an element a of a semigroup S, let $J(a) = S^1 a S^1$ and $I(a) = J(a) - J_a$, where $J_a = \{ s \in S : J(s) = J(a) \}$. In Theorem 3.11 of [5] it was asserted that if S is a T_{2R} semigroup then S satisfies the following condition (condition (v) of Theorem 3.11 of [5]): for each $b \in S$, if $|J_b| = 2$ and $a \in I(b)$ then there are elements $x, y \in S^1$ such that $xJ_by \cap J_a \neq \emptyset$ and $xJ_by \nsubseteq J_a$. This condition needs a little correction, because in the proof of Theorem 3.11 of [5] we proved actually that if S is a T_{2R} semigroup then S satisfies the following condition: for each $b \in S$, if $|J_b| = 2$, $I(b) \neq \{0\}$ and $a \in I(b)$ then there are elements $x, y \in S^1$ such that $xJ_by \cap J_a \neq \emptyset$ and $xJ_by \nsubseteq J_a$. When we proved in [5] that a semigroup S satisfying conditions (i)-(v) of Theorem 3.11 of [5] is a T_{2R} semigroup, condition (v) of Theorem 3.11 was used for only such element b of S, which satisfies both of $|J_b| = 2$ and $I(b) \neq \{0\}$. Thus the proof of Theorem 3.11 of [5] is basically the proof of the following theorem.

Theorem 1 S is a T_{2R} semigroup if and only if it satisfies all of the following conditions.

1. S is a semilattice of a non-trivial nil semigroup S_0 and a two-element right zero semigroup S_1 such that $S_0 S_1 \subseteq S_0$.

2. The ideals of S form a chain with respect to inclusion.

3. For each $b \in S_0$, either $b \in bS_1$ or $bS_1 \subseteq S^1 b S_0$.

100x704
(4) For each \(b \in S_0 \), either \(\{0\} = S_1b \) or \(S_1b \cap (S_0bS^1 \cup S^1bS_0) \neq \emptyset \).

(5) For each \(b \in S \), if \(|J_b| = 2 \), \(I(b) \neq \{0\} \) and \(a \in I(b) \) then there are elements \(x, y \in S^1 \) such that \(xJ_by \cap J_a \neq \emptyset \) and \(xJ_by \nsubseteq J_a \).

In this paper, if \(S \) denotes a T2R semigroup then \(S_0 \) and \(S_1 \) will denote the subsemigroups of \(S \) appearing in condition (1) of Theorem 1. The elements of \(S_1 \) will be denoted by \(u \) and \(v \).

Proposition 2 If \(b \) is an element of a T2R semigroup \(S \) such that \(|J_b| = 2 \) and \(I(b) = \{0\} \) then, for every \(x, y \in S^1 \), either \(0 \notin xJ_by \) or \(xJ_by = \{0\} \). Moreover, \(J_bS_0 = S_0J_b = \{0\} \) and either \(S_1J_b = \{0\} \) or \(S_1J_b = J_b \).

Proof. Let \(b \) be an element of a T2R semigroup \(S \) such that \(|J_b| = 2 \) and \(I(b) = \{0\} \). Then \(b \in S_0 \). By Lemma 3.9 of [5], \(J_b = bS_1 = \{bu, bv\} \). By Lemma 2.7 of [1], \(J_b \) is a normal complex, that is, \(xJ_by \cap J_b \neq \emptyset \) implies \(xJ_by \subseteq J_b \) for every \(x, y \in S^1 \). As \(xJ_by \subseteq J(b) = J_b \cup \{0\} \), we get either \(0 \notin xJ_by \) or \(xJ_by = \{0\} \) for every \(x, y \in S^1 \).

Next we show that \(J_bS_0 = S_0J_b = \{0\} \). If \(J_by \neq \{0\} \) for some \(y \in S_0 \) then, \(0 \notin J_by \) and so \(buy \in J_b \). Thus \(buyu = bu \) from which we get \(bu(yu)^n = bu \) for every positive integer \(n \). As \(S_0 \) is a nil semigroup and \(yu \in S_0 \), we have \(bu = 0 \). This is a contradiction. Hence \(J_bS_0 = \{0\} \). If \(xJ_b \neq \{0\} \) for some \(x \in S_0 \) then, \(0 \notin xJ_b \) and so \(xbu \in J_b \). Then \(xbu = bu \). From this we get \(x^nbu = bu \) for every positive integer \(n \). As \(x \in S_0 \) and \(S_0 \) is a nil semigroup, we get \(bu = 0 \). This is a contradiction. Hence \(S_0J_b = \{0\} \).

Next we show that \(uJ_b = \{0\} \) if and only if \(vJ_b = \{0\} \). Assume \(uJ_b = \{0\} \) and \(vJ_b \neq \{0\} \). Then \(0 \notin vJ_b \) and so \(vbu \in J_b \). Then \(vbu = bu \) from this we get \(bu = vbu = uvbu = ubu = 0 \). This is a contradiction. Thus \(uJ_b = \{0\} \) implies \(vJ_b = \{0\} \). Similarly, \(vJ_b = \{0\} \) implies \(uJ_b = \{0\} \). Hence \(uJ_b = \{0\} \) iff \(vJ_b = \{0\} \).

Next we show that either \(S_1J_b = \{0\} \) or \(S_1J_b = J_b \). First of all, we note that \(S_1J_b = J_b \) is satisfied if and only if \(ef = f \) is satisfied for every \(e \in S_1 \) and \(f \in J_b \). Assume \(S_1J_b \neq \{0\} \). As \(uJ_b = \{0\} \) iff \(vJ_b = \{0\} \), \(uJ_b \neq \{0\} \) and \(vJ_b \neq \{0\} \). Thus \(0 \notin uJ_b \) and \(0 \notin vJ_b \) from which we get that, for every \(x \in S_1 \), there are elements \(y, z \in S_1 \) such that \(ubx = by \) and \(vbx = bz \). Then \(uw = w \) and \(vw = w \) for every \(w \in J_b \), that is, \(S_1J_b = J_b \).

Corollary 3 If \(S \) is a T2R semigroup and \(b \in S_0 \) is arbitrary with \(|J_b| = 2 \) then \(S_0J_b \subseteq I(b) \), \(J_bS_0 \subseteq I(b) \) and either \(S_1J_b \subseteq I(b) \) or \(S_1J_b = J_b \).

Proof. Let \(b \in S_0 \) be an arbitrary element of a T2R semigroup \(S \) such that \(|J_b| = 2 \). By Lemma 2 of [17], the Rees factor semigroup of \(S \) by the ideal \(I(b) \) is a T2R semigroup, in which \(J(b) = J_b \cup \{0\} \). Thus our assertion follows from Proposition 2.
Proposition 4 If S is a T2R semigroup then there is an element $b \in S_0$ such that $|J_b| = 2$.

Proof. Assume, in an indirect way, that S is a T2R semigroup in which $|J_b| \neq 2$ for every $b \in S_0$. Then, by Lemma 3.9 of [5], $J_b = \{b\}$ for every $b \in S_0$.

First we show that u and v are left identity elements of S. Let $a \in S_0$ be an arbitrary element. Then $a \in I(u) = S_0 \neq \{0\}$. By (5) of Theorem 1, there are elements $x, y \in S^1$ such that $xJ_ay \cap J_a \neq \emptyset$ and $xJ_ay \not\subseteq J_a$. As $J_a = \{a\}$, we have $xuy = a$ and $xvy \neq a$ or $xuv \neq a$.

By the symmetry, we can consider only one of the above two cases. Assume, for example, $xuv = a$, $xvy \neq a$. If $x \in S_0$ then $xu \in SS_1$ and so (by Lemma 3.9 of [5]) $J_{xu} = xuS_1 = \{xu, xv\}$. As $xu \in S_0$, we have $|J_{xu}| = 1$ and so $xu = xv$. From this it follows that $xuv = xvy$ which is a contradiction. Thus $x \in S_1$ and so $xu = u$. From $uy = xuv = a$ we get $ua = a$ and so we also have $va = a$. Thus u and v are left identity elements of S.

By the previous part of the proof, if a is an arbitrary element of S_0 then there is an element $y \in S_0$ such that $uy = a$ and $vy \neq a$ or $vy = a$ and $uy \neq a$. Both cases are impossible, because $uy = a$ is satisfied if and only if $y = a$ if and only if $vy = a$, because u and v are left identity elements of S. \qed

Proposition 5 If there exists a T2R semigroup then there exists a T2R semigroup S which contains an element $b \in S_0$ with $|J_b| = 2$ and $I(b) = \{0\}$.

Proof. Suppose that there exist a T2R semigroup H which is a semilattice of a non-trivial nil semigroup H_0 and a two-element right zero semigroup H_1. By Proposition 4, there is an element $b \in H_0$ such that $|J_b| = 2$. Denote S the Rees factor semigroup $H/I(b)$ defined by the ideal $I(b)$. By Lemma 2 of [17], S is a Δ-semigroup. It is clear that S is a T2R-semigroup in which $S_1 = H_1$ and $S_0 = H_0/I(b)$. Identifying the elements of $S - \{0\}$ and $H - I(b)$, for $b \in S_0$, we have (in S) $|J_b| = 2$ and $I(b) = \{0\}$.

\[\square \]

Proposition 6 In every T2R semigroup S there is an element $b \in S_0$ such that $ub \neq b$ and $vb \neq b$.

Proof. Assume, in an indirect way, that there is a T2R semigroup S in which $ub = vb = b$ is satisfied for every $b \in S_0$. Let $b \in S_0$ be an arbitrary element with $|J_b| = 2$. By Proposition 4, such element exists. By (5) of Theorem 1, there are elements $x, y \in S^1$ such that $xJ_ay \cap J_b \neq \emptyset$ and $xJ_ay \not\subseteq J_b$. Let $b^* \in J_b$ denote the element for which $b^* \in xJ_ay$ is satisfied. Then $xuy = b^*$ or $xvy = b^*$. Consider the case $xuy = b^*$ (the proof is similar in the case $xvy = b^*$). By $xJ_ay \not\subseteq J_b$, we have $xvy \notin J_b$. Then $xuy = b^*$ and $xvy \neq b^*$ and so $uy \neq vy$ from which we get $y \notin S$, that is, $y = 1$. Then $xvy = xv = xuv = b^*v \in J_b$ which contradicts $xvy \notin J_b$. \[\square \]
Proposition 7 In every T2R semigroup S, $S_0^2 = S_0$.

Proof. It is sufficient to show that, in every T2R semigroup S, $S_0^2 \neq \{0\}$. This implies our assertion, because if $S_0^2 \neq S_0$ was in a T2R semigroup S, then we would have $H_0^2 = \{0\}$ in the Rees factor semigroup $H = S/S_0^2$ of S defined by the ideal S_0^2 of S (which is a T2R semigroup in which $H_0 = S_0/S_0^2$).

Assume, in an indirect way, that there is a T2R semigroup S in which $S_0^2 = \{0\}$. By Proposition 6, $uS_0 \neq S_0$ (and $vS_0 \neq S_0$). Let $a \in S_0 - uS_0$ be an arbitrary element. By (5) of Theorem 1, there are elements $x, y \in S^1$ such that $xJ_ay \cap J_a \neq \emptyset$ and $xJ_ay \subseteq J_a$. Let $a^* \in J_a$ denote the element for which $a^* \in xJ_ay$ is satisfied. Then $xuv = a^*$ or $xvy = a^*$. Consider the case $xuv = a^*$ (the proof is similar in case $xvy = a^*$). Then $xuv \neq a^*$. If $|J_a| = 1$ then $a = a^*$ and so $ua^* \neq a^*$. If $|J_a| = 2$ then $a \in J_a = J_{a^*} = \{a^*u, a^*v\}$ and so there is an element $x \in \{u, v\}$ such that $a = a^*x$. Then $ua^* \neq a^*$, because the opposite case implies $a = a^*x = (ua^*)x = u(a^*x) = ua$ which is a contradiction. Consequently (in both cases) $a^* \notin uS_0$. Thus, from the above equation $xuv = a^*$, it follows that $x \in S_0$. If $y = 1$ then $a^* = xv \in SS_1$ and so, by Lemma 3.9 of [5], $J_a = J_{a^*} = \{a^*u, a^*v\}$. Then $xvy = xv = xuv = a^*v \in J_{a^*} = J_a$ which is a contradiction. If $y \in S_1$ then $uy = vy$ and so $xuv = xvy = a^*$ which is also a contradiction. If $y \in S_0$ then, using also $x \in S_0$, we have $a^* = xuv \in S_0^2 = \{0\}$ from which we get $a^* = ua^* \in uS_0$. This is a contradiction. As in all cases we get a contradiction, the indirect assumption is not true. \square

Remarks (1): From Theorem 3.3 of [1] it follows that there is no a finite T2R semigroup. This result also follows from Proposition 7 of this paper, because every finite nil semigroup is nilpotent.

(2): A semigroup S is called an \mathcal{R}-commutative semigroup if, for every $s, t \in S$, there is an element $r \in S^1$ such that $st = tsr$. If $b \in S_0$ is an arbitrary element of an \mathcal{R}-commutative T2R semigroup S then, by $S\mu S = S$, there are elements $x, y \in S$ and $z \in S^1$ such that $b = xuv = uxzy$. Then $ub = b$. This contradicts Proposition 6. Consequently there is no an \mathcal{R}-commutative T2R semigroup.

(3): A semigroup S is called a permutative semigroup if it satisfies a non-identity permutational identity. A semigroup S is called a medial [left commutative] semigroup if it satisfies the identity $axyb = ayxb \ [xya = yxa]$ ($a, b, x, y \in S$). By Theorem 1 of [12], there is no a permutative T2R semigroup. This result also follows from Proposition 6 and Proposition 7 of this paper. By Theorem 4 of [12], every permutative Δ-semigroup is medial. Thus it is sufficient to show that there is no a medial T2R semigroup. First we show that there is no a left commutative T2R semigroup. Assume, in an indirect way, that there is a left commutative T2R semigroup S. Let $x \in S_0$ be an arbitrary element. As $S\mu S = S$, there are elements $a, b \in S$ such that $x = aub = uab$ and
so \(ux = x \). By Proposition 6, it is impossible. In the next we prove that there is no a medial T2R semigroup. Assume, in an indirect way, that there is a medial T2R semigroup \(S \). It is clear that \(\varrho = \{ (a, b) \in S \times S : (\forall s \in S) sa = sb \} \) is a congruence of \(S \). Let \([x]\varrho\) denotes the \(\varrho \)-class of \(S \) containing the element \(x \) of \(S \). Then \([u]\varrho = \{ u \}\) and \([v]\varrho = \{ v \}\). If \([0]\varrho = S_0\) then \((a, 0) \in \varrho\) for every \(a \in S_0\). Thus, for every \(a, b \in S_0\), \(ba = b0 = 0 \) which means that \((S_0)^2 = \{0\}\). This result contradicts Proposition 7. Thus \([0]\varrho \neq S_0\) and so the factor semigroup \(S/\varrho\) of \(S \) is a T2R semigroup (see also Lemma 2 of [17]). As \(sxyb = syxb \) is satisfied for every \(s, x, y, b \in S \), we have \((xyb, yxb) \in \varrho\) for every \(x, y, b \in S \). Thus the T2R semigroup \(S/\varrho\) is left commutative. This is a contradiction.

References

Received: October 10, 2013