Relative Character Graphs Related to

\(GL(2, q) \) and its Subgroups

Firuz Kamalov

Mathematics Department
Canadian University of Dubai, Dubai, UAE
firuz@cud.ac.ae

Ho-Hon Leung

Mathematics Department
Canadian University of Dubai, Dubai, UAE
leung@cud.ac.ae

Copyright © 2013 Firuz Kamalov and Ho-Hon Leung. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let \(G \) be a finite group and \(H \) be a subgroup of \(G \). T. Gnanaseelan and C. Selvaraj defined a relative character graph \(\Gamma(G, H) \) by using the irreducible characters of \(G \) and the restrictions of these characters to \(H \). In this paper, we study these graphs for \(GL(2, q) \) and its subgroups.

Mathematics Subject Classification: 20C99

Keywords: Relative character graph, irreducible character

1 Introduction

In this paper, all groups are finite unless otherwise stated. All characters of a group are assumed to be complex-valued. Let \(K_n \) be the complete graph with \(n \) vertices. For a group \(G \), let \(\text{Irr}(G) \) denote the set of all irreducible characters of \(G \). Let \(H \) be a subgroup of \(G \) and \(\chi \) be a character of \(G \). \(\chi_H \) is
its restriction to H. In [2], a graph called relative character graph is defined as follows:

Definition 1.1 If G is a finite group and H is a subgroup of G, then the relative character graph denoted by $\Gamma(G, H)$ has the vertex set $V = \text{Irr}(G)$. Two vertices χ and ψ are joined by an edge if χ_H and ψ_H have at least one irreducible character of H as a common constituent.

Its properties and some examples were studied in [2], [5], [6] and [7]. In this article, we focus on examples of relative character graphs for $GL(2, q)$ and its subgroups, where q is an odd prime.

2 Character Theory of $GL(2, q)$ and its subgroups

2.1 Notations and Prerequisites

We shall follow the notations used in [4]. Let \mathbb{F}_q be the finite field of order q.

For each $s \in \mathbb{F}_q^*$, let

$$sI = \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix}, \quad u_s = \begin{pmatrix} s & 1 \\ 0 & s \end{pmatrix}.$$

For $s, t \in \mathbb{F}_q^*$ where $s \neq t$, let

$$d_{s,t} = \begin{pmatrix} s & 0 \\ 0 & t \end{pmatrix}.$$

Let \mathbb{F}_{q^2} be the finite field of order q^2 and let $S = \{s \in \mathbb{F}_{q^2} \mid s^q = s\}$. Then S is a subfield of \mathbb{F}_{q^2} of order q and hence is isomorphic to \mathbb{F}_q. From now on we shall identify the subfield S of \mathbb{F}_{q^2} with the field \mathbb{F}_q. Note that if $r \in \mathbb{F}_{q^2}$, then r^{1+q} and $r + r^q$ are both in the subfield \mathbb{F}_q of \mathbb{F}_{q^2}, see [1] for further reference.

Take $r \in \mathbb{F}_{q^2}^* \setminus \mathbb{F}_q^*$, let

$$v_r = \begin{pmatrix} 0 & 1 \\ -r^{1+q} & r + r^q \end{pmatrix}.$$

The conjugacy classes of G can be described by Proposition 28.4 in [4]:

Proposition 2.1 ([4]) There are $q^2 - 1$ conjugacy classes in $GL(2, q)$, described as follows:

<table>
<thead>
<tr>
<th>class rep. g</th>
<th>sI</th>
<th>u_s</th>
<th>$d_{s,t}$</th>
<th>v_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>C_G(g)</td>
<td>$</td>
<td>$(q^2 - 1)(q^2 - q)$</td>
<td>$(q - 1)q$</td>
</tr>
<tr>
<td>No. of classes</td>
<td>$q - 1$</td>
<td>$q - 1$</td>
<td>$(q - 1)(q - 2)/2$</td>
<td>$(q^2 - q)/2$</td>
</tr>
</tbody>
</table>
The family of conjugacy class representatives sI and u_s are indexed by the elements $s \in \mathbb{F}_q^*$. The family of conjugacy class representatives $d_{s,t}$ is indexed by unordered pairs $\{s,t\}$ of distinct elements of \mathbb{F}_q^*. The family of conjugacy class representatives v_r is indexed by unordered pairs $\{r,r^q\}$ of elements in $\mathbb{F}_q^{*2}\setminus\mathbb{F}_q^*$.

Let ϵ be a generator of the cyclic group \mathbb{F}_q^{*2} and let $\omega = e^{2\pi i/(q^2-1)}$. Suppose that $r \in \mathbb{F}_q^{*2}$ and $r = \epsilon^m$ for some m. Let $\tau = \omega^m$. Then $r \mapsto \tau$ is an irreducible character of \mathbb{F}_q^{*2}. Note that every irreducible character of \mathbb{F}_q^{*2} is of the form $r \mapsto r^j$ for some j.

2.2 Characters of $GL(2,q)$

The character table of $GL(2,q)$ is described by Theorem 28.5 in [4].

Theorem 2.2 ([4]) By the notations in Section 2.1, the irreducible characters of $GL(2,q)$ are given by λ_i, ψ_i, $\psi_{i,j}$, χ_i as follows.

<table>
<thead>
<tr>
<th></th>
<th>sI</th>
<th>u_s</th>
<th>$d_{s,t}$</th>
<th>v_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_i</td>
<td>\mathbb{F}_q^{*2}</td>
<td>\mathbb{F}_q^{*2}</td>
<td>$(st)^i$</td>
<td>$\tau^{i(1+q)}$</td>
</tr>
<tr>
<td>ψ_i</td>
<td>$q\mathbb{F}_q^{*2}$</td>
<td>0</td>
<td>$(st)^i$</td>
<td>$-\tau^{i(1+q)}$</td>
</tr>
<tr>
<td>$\psi_{i,j}$</td>
<td>$(q+1)\mathbb{F}_q^{*2}$</td>
<td>\mathbb{F}_q^{*2}</td>
<td>τ^{i+j}</td>
<td>$\tau^j + \tau^q$</td>
</tr>
<tr>
<td>χ_i</td>
<td>$(q-1)\mathbb{F}_q^{*2}$</td>
<td>$-\mathbb{F}_q^{*2}$</td>
<td>0</td>
<td>$-(\tau^j + \tau^q)$</td>
</tr>
</tbody>
</table>

For λ_i, ψ_i, we have $0 \leq i \leq q-2$. For $\psi_{i,j}$, we have $0 \leq i < j \leq q-2$. For χ_i, we first consider the set of integers j with $0 \leq j \leq q^2-1$ such that $q+1$ does not divide j. If j_1, j_2 belong to this set and $j_1 \equiv j_2 \mod (q^2-1)$, we choose precisely one of j_1 and j_2 to belong to the indexing set for the character χ_i. Hence there are $(q^2-q)/2$ characters χ_i.

2.3 Characters of B

Let

$$B = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, c \in \mathbb{F}_q^*, b \in \mathbb{F}_q \right\}$$

We call B the Borel subgroup of $GL(2,q)$. Note that $|B| = (q-1)^2 q$. The author is not aware of any reference for the conjugacy classes and character table of B. Hence they will be derived as follows.

It is clear that sI commutes with every element in B and hence each sI forms an orbit of size 1 under the action of B on itself by conjugation. There are $q-1$ of them.
For \(u_s, s \in \mathbb{F}_q^* \), an element belongs to the centralizer \(C_B(u_s) \) if and only if the matrix is of the form:

\[
\begin{pmatrix}
 a & b \\
 0 & a
\end{pmatrix}
\]

Hence \(|C_B(u_s)| = (q-1)q \) and each conjugacy class represented by \(u_s \) has size \(q - 1 \). There are \(q - 1 \) of such conjugacy classes.

For \(d_{s,t}, s \neq t \) and \(s, t \in \mathbb{F}_q^* \), an element belongs to its centralizer if and only if the matrix is of the form:

\[
\begin{pmatrix}
 a & 0 \\
 0 & d
\end{pmatrix}
\]

Hence \(|C_B(d_{s,t})| = (q-1)^2 \). Hence each class is of size \(q \). Note that the following equation

\[
\begin{pmatrix}
 0 & 1 \\
 1 & 0
\end{pmatrix}^{-1} d_{s,t} \begin{pmatrix}
 0 & 1 \\
 1 & 0
\end{pmatrix} = d_{t,s}
\]

holds in \(GL(2, q) \) but not in \(B \). The classes represented by \(d_{s,t} \) and \(d_{t,s} \) are different conjugacy classes in \(B \). There are \((q-1)(q-2)/2 \) of them respectively.

The sum of the numbers of all elements from the conjugacy classes represented by \(sI, u_s, d_{s,t} \) and \(d_{t,s} \) is

\[(q-1)(1) + (q-1)(q-1) + (q-1)(q-2)(q) = (q-1)^2q.
\]

It is equal to \(|B| \) and it is the class equation on \(B \). Hence we have found all conjugacy classes of \(B \). We summarize the result as follows:

Lemma 2.3 By the notations in Section 2.1, there are \((q-1)q \) conjugacy classes in \(B \subset GL(2, q) \), described as follows:

<table>
<thead>
<tr>
<th>class rep. (g)</th>
<th>(sI)</th>
<th>(u_s)</th>
<th>(d_{s,t})</th>
<th>(d_{t,s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>C_B(g)</td>
<td>)</td>
<td>((q-1)^2q)</td>
<td>((q-1)q)</td>
</tr>
<tr>
<td>No. of classes</td>
<td>((q-1))</td>
<td>((q-1))</td>
<td>((q-1)(q-2)/2)</td>
<td>((q-1)(q-2)/2)</td>
</tr>
</tbody>
</table>

where \(1 \leq s < t \leq q - 1 \).

Then we shall look at the character table of \(B \).

Let \(B' \) be the derived subgroup of \(B \). We have

\[B/B' = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \mid a, d \in \mathbb{F}_q^* \right\} \]

This quotient group has order \((q - 1)^2 \) and hence there are \((q - 1)^2 \) irreducible linear characters of \(B \).

For \(0 \leq i, j \leq q - 2 \), define \(\alpha_{i,j} : B \to C \) by sending \(\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \) to \(\overline{a} \overline{d}^j \). Hence \(\alpha_{i,j} \) has the following values on each conjugacy class of \(B \):
Relative character graphs related to $GL(2, q)$ and its subgroups

<table>
<thead>
<tr>
<th>$\alpha_{i,j}$</th>
<th>sI</th>
<th>u_s</th>
<th>$d_{s,t}$</th>
<th>$d_{t,s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\overline{s^{i+j}}$</td>
<td>$\overline{s^{i+j}}$</td>
<td>$\overline{s^{i}}$</td>
<td>$\overline{s^{t}}$</td>
<td></td>
</tr>
</tbody>
</table>

It is clear that $\alpha_{i,j}$ is a linear character. (Indeed, these are the characters lifted from B/B'.)

Note that the complex conjugate of s is $(s)^{-1}$. A simple calculation shows that $\langle \alpha_{i,j}, \alpha_{i,j} \rangle_B = 1$ and hence $\alpha_{i,j}$, $0 \leq i, j \leq q - 2$ are all irreducible linear characters of B.

Let

$$D = \left\{ \begin{pmatrix} s & 0 \\ 0 & t \end{pmatrix} \mid s, t \in F_q^* \right\}$$

For $0 \leq i \leq q - 2$, let $f_i : D \to C$ be the functions

$$f_i : g \mapsto (\det g)^i$$

Let $\beta_i = (f_i)^B$, the induced character of f_i from D to B. We use Proposition 21.23 in [4] to calculate β_i for each conjugacy class representative as follows.

For $g = sI$, we have

$$\beta_i(g) = \frac{|C_B(g)|}{|C_D(g)|} f_i(g) = \frac{(q - 1)^2 q}{(q - 1)^2} f_i(g) = q f_i(g)$$

For $g = u_s$, we have

$$\beta_i(g) = 0$$

For $g = d_{s,t}$,

$$\beta_i(g) = \frac{|C_B(g)|}{|C_D(g)|} f_i(g) = \frac{(q - 1)^2}{(q - 1)^2} f_i(g) = f_i(g)$$

To conclude, β_i has the following values on each conjugacy class:

<table>
<thead>
<tr>
<th>β_i</th>
<th>sI</th>
<th>u_s</th>
<th>$d_{s,t}$</th>
<th>$d_{t,s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q s^{2i}$</td>
<td>0</td>
<td>$\overline{s^i}$</td>
<td>$\overline{s^t}$</td>
<td></td>
</tr>
</tbody>
</table>

The following calculations

$$\langle \beta_i, \beta_i \rangle_B = \frac{1}{|B|} \sum_{sI} \sum_{g \in sI} \beta_i(g) \overline{\beta_i(g)} + \frac{1}{|B|} \sum_{d_{s,t}} \sum_{g \in d_{s,t}} \beta_i(g) \overline{\beta_i(g)}$$

$$= \frac{1}{(q - 1)^2 q^2} q^2(q - 1) + \frac{1}{(q - 1)^2 q} q(q - 1)(q - 2)$$

$$= \frac{q}{q - 1} + \frac{q - 2}{q - 1} = 2$$
show that β_i is not irreducible. We calculate $\langle \beta_i, \alpha_{i,i} \rangle_B$ as follows.

$$\langle \beta_i, \alpha_{i,i} \rangle_B = \frac{1}{|B|} \sum_{sI} \sum_{g \in sI} \beta_i(g) \alpha_{i,i}(g) + \frac{1}{|B|} \sum_{d_{s,t}} \sum_{g \in d_{s,t}} \beta_i(g) \alpha_{i,i}(g)$$

$$= \frac{1}{(q-1)^2} q(q-1) + \frac{1}{(q-1)^2} q(q-1)(q-2)$$

$$= \frac{1}{q-1} + \frac{q-2}{q-1} = \frac{q-1}{q-1} = 1$$

Set $\gamma_i = \beta_i - \alpha_{i,i}$. Then we have

$$\langle \gamma_i, \gamma_i \rangle_B = \langle \beta_i, \beta_i \rangle_B - \langle \beta_i, \alpha_{i,i} \rangle_B - \langle \alpha_{i,i}, \beta_i \rangle_B + \langle \alpha_{i,i}, \alpha_{i,i} \rangle_B$$

$$= 2 - 1 - 1 + 1 = 1$$

Hence, γ_i is an irreducible character for each i in $0 \leq i \leq q-2$. γ_i has the following values on each conjugacy class:

<table>
<thead>
<tr>
<th>sI</th>
<th>u_s</th>
<th>$d_{s,t}$</th>
<th>$d_{t,s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_i</td>
<td>$(q-1)^{2i}$</td>
<td>$-s^{2i}$</td>
<td>0</td>
</tr>
</tbody>
</table>

However, γ_i are not all different. More precisely, let $k = (q-1)/2$. For $0 \leq i \leq (q-3)/2$, γ_i and γ_{i+k} are the same characters since

$$s^{2(i+k)} = s^{2i+2k} = s^{2i+(q-1)} = s^{2i}$$

as $s \in \mathbb{F}_q^*$ and hence $s^{q-1} = 1$. It implies that the set $\{\gamma_i | 0 \leq i \leq q-2\}$ gives $(q-1)/2$ different non-linear irreducible characters of degree $(q-1)$. If we define δ_i by the following table:

<table>
<thead>
<tr>
<th>sI</th>
<th>u_s</th>
<th>$d_{s,t}$</th>
<th>$d_{t,s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_i</td>
<td>$(q-1)^{2i}$</td>
<td>$-s^{2i}$</td>
<td>0</td>
</tr>
</tbody>
</table>

It is clear that all δ_i are distinct. The following calculation

$$\langle \delta_i, \delta_i \rangle_B = \frac{1}{|B|} \sum_{sI} \sum_{g \in sI} \delta_i(g) \delta_i(g) + \frac{1}{|B|} \sum_{u_s} \sum_{g \in u_s} \delta_i(g) \delta_i(g)$$

$$= \frac{1}{(q-1)^2} (q-1)(q-1)^2 + \frac{1}{(q-1)^2} (q-1)(q-1) = 1$$

shows that δ_i is irreducible for all $0 \leq i \leq q-2$. Hence we have $(q-1)$ different irreducible non-linear characters of B. Note that δ_i for even i is the same as $\gamma_{i/2}$. Based on $\alpha_{i,j}$ and δ_i, we have derived a total of $(q-1)^2 + (q-1) = (q-1)q$ irreducible characters of B. We summarize the result as follows:
Theorem 2.4 By the notations in Section 2.1, there are \((q-1)q\) irreducible characters in \(B\), described as follows:

<table>
<thead>
<tr>
<th>(sI)</th>
<th>(u_s)</th>
<th>(d_{s,t})</th>
<th>(d_{t,s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_{i,j})</td>
<td>(\bar{s}^i j)</td>
<td>(\bar{s}^i j)</td>
<td>(\bar{s}^i j)</td>
</tr>
<tr>
<td>(\delta_i)</td>
<td>((q-1)\bar{s}^i)</td>
<td>(-\bar{s}^i)</td>
<td>0</td>
</tr>
</tbody>
</table>

where \(0 \leq i, j \leq q - 2\).

The following definition will be used in the last section.

Definition 2.5 If \(k < 0\), then we define \(\delta_k\) as a character of \(B\) by

\(\delta_k \equiv \delta_{k'}\)

where \(0 \leq k' \leq q - 2\) and \(k' \equiv k \mod (q - 1)\).

If \(k > q - 2\), then we define \(\delta_k\) as a character of \(B\) by

\(\delta_k \equiv \delta_{k''}\)

where \(0 \leq k'' \leq q - 2\) and \(k'' \equiv k \mod (q - 1)\).

2.4 Characters of \(D\)

For

\[D = \left\{ \begin{pmatrix} s & 0 \\ 0 & t \end{pmatrix} \mid s, t \in \mathbb{F}_q^* \right\},\]

we call \(D\) the diagonal subgroup of \(GL(2,q)\). Note that \(D\) is an abelian subgroup of \(GL(2,q)\) and is of order \((q - 1)^2\). Hence there are \((q - 1)^2\) irreducible linear characters of \(D\). All conjugacy classes are of size 1 and, by the notations above, are given by \(sI\), \(d_{s,t}\) and \(d_{t,s}\) where \(1 \leq s < t \leq q - 1\). We have the following character table for \(D\).

Lemma 2.6 By the notations in Section 2.1, there are \((q-1)^2\) irreducible linear characters of \(D\) which are given by \(f_{i,j}\) as follows.

<table>
<thead>
<tr>
<th>(f_{i,j})</th>
<th>(sI)</th>
<th>(d_{s,t})</th>
<th>(d_{t,s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{s}^i j)</td>
<td>(\bar{s}^i j)</td>
<td>(\bar{s}^i j)</td>
<td>(\bar{s}^i j)</td>
</tr>
</tbody>
</table>

where \(0 \leq i, j \leq q - 2\).

The following definition will be used in the last section.

Definition 2.7 If \(k < 0\), then we define \(f_{i,k}\) as a character of \(D\) by

\(f_{i,k} \equiv f_{i,k'}\)

where \(0 \leq k' \leq q - 2\) and \(k' \equiv k \mod (q - 1)\).

If \(k > q - 2\), then we define \(f_{i,k}\) as a character of \(D\) by

\(f_{i,k} \equiv f_{i,k''}\)

where \(0 \leq k'' \leq q - 2\) and \(k'' \equiv k \mod (q - 1)\).
3 Relative character graphs

This section is devoted to the study of certain subgraphs of $\Gamma(GL(2, q), B)$ and $\Gamma(B, D)$.

3.1 $\Gamma(GL(2, q), B)$

To illuminate our discussion, let

$$S = \text{Irr}(GL(2, q)) \setminus \{\chi_i, \forall i \text{ in the index set}\}.$$ \hspace{1cm} (1)

Then let $\Gamma_S(GL(2, q), D)$ be the subgraph of $\Gamma(GL(2, q), D)$ spanned by the vertices in S. Let K_p be the complete graph of p vertices. Let K'_p be the graph obtained by removing an edge from K_p. The following theorem was shown in [6].

Theorem 3.1 ([6]) Let $G = GL(2, q)$ and D be the diagonal subgroup of G. Let S be the set defined in (1). Let $\Gamma_S(G, D)$ be the subgraph of $\Gamma(G, D)$ spanned by the vertices in S. Then $\Gamma_S(G, D)$ has $(q - 1)$ connected components. Of these, $(q - 1)/2$ are isomorphic to $K_{(q-1)/2}$ and $(q - 1)/2$ are isomorphic to $K'_{(q+5)/2}$, where $K'_{(q+5)/2}$ is a graph obtained by removing an edge from $K_{(q+5)/2}$.

We shall look at $\Gamma_S(GL(2, q), B)$.

Since $D \leq B \leq GL(2, q)$, $\Gamma_S(GL(2, q), B)$ is a subgraph of $\Gamma_S(GL(2, q), D)$ by Lemma 2.4 in [2]. First, we calculate the values of restrictions of the characters of $GL(2, q)$ to B.

Lemma 3.2 By the notations in Section 1, Definition 2.5, Theorem 2.2 and Theorem 2.4,

$$(\lambda_i)_B = \alpha_{i,i}$$

$$(\psi_i)_B = \alpha_{i,i} + \delta_{2i}$$

$$(\psi_{i,j})_B = \alpha_{i,j} + \alpha_{j,i} + \delta_{i+j}$$

$$(\chi_i)_B = \delta_i$$

Proof. By Theorem 2.2, we have the following table,

<table>
<thead>
<tr>
<th></th>
<th>sI</th>
<th>u_s</th>
<th>$d_{s,t}$</th>
<th>$d_{t,s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\lambda_i)_B$</td>
<td>$\overline{s^i}$</td>
<td>$\overline{s^i}$</td>
<td>$(st)^i$</td>
<td>$(st)^i$</td>
</tr>
<tr>
<td>$(\psi_i)_B$</td>
<td>$q\overline{s^{2i}}$</td>
<td>0</td>
<td>$(st)^i$</td>
<td>$(st)^i$</td>
</tr>
<tr>
<td>$(\psi_{i,j})_B$</td>
<td>$(q + 1)s^{i+j}$</td>
<td>s^{i+j}</td>
<td>$\overline{s^{i+j}} + \overline{s^{i+j}}$</td>
<td>$\overline{s^{i+j}} + \overline{s^{i+j}}$</td>
</tr>
<tr>
<td>$(\chi_i)_B$</td>
<td>$(q - 1)\overline{s^i}$</td>
<td>$-\overline{s^i}$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Comparing this table with the character table of B in Theorem 2.4, it is clear that the four equations in the lemma holds true and hence the lemma.
Definition 3.3 If n is odd, let $Q_{(n+5)/2}$ be the graph obtained by adjoining two vertices w_1, w_2 and two edges to $K_{(n+1)/2}$ in the following way: Choose a pair of adjacent vertices in $K_{(n+1)/2}$, call them v_1, v_2. Join w_1 with v_1 by an edge and join w_2 with v_2 by an edge.

Up to isomorphism, the definition of $Q_{(n+5)/2}$ is independent of the choice of the adjacent vertices v_1, v_2 in $K_{(n+1)/2}$.

Remark 3.4 Note that $Q_{(q+5)/2}$ is a subgraph of K_3, where K_3 is the graph obtained by removing an edge from $K_{(q+5)/2}$.

We are in the position to describe $\Gamma_S(GL(2, q), B)$.

Theorem 3.5 Let G be the group $GL(2, q)$ and B be the Borel subgroup of G. Let S be the set defined in (1). Let $\Gamma_S(G, B)$ be the subgraph of $\Gamma(G, B)$ spanned by the vertices in S. Then $\Gamma_S(G, B)$ has $(q-1)$ connected components. Of these, $(q-1)/2$ are isomorphic to $K_{(q-1)/2}$ and $(q-1)/2$ are isomorphic to $Q_{(q+5)/2}$, where $Q_{(q+5)/2}$ is the graph defined in Definition 3.3.

Proof. Let $S_\lambda = \{\lambda_i | 0 \leq i \leq q-2\} \subset V(\Gamma(G, B))$, then the subgraph $\Gamma_{S_\lambda}(G, B)$ spanned by the vertices in S_λ has $q-1$ isolated vertices since $(\lambda_i)_B$ and $(\lambda_{i'})_B$ have no common irreducible constituent for $i \neq i'$, by Lemma 3.2.

Next, let $S_{\lambda, \psi} = \{\lambda_i, \psi_i | 0 \leq i \leq q-2\} \subset V(\Gamma(G, B))$. $(\lambda_i)_B$ and $(\psi_i)_B$ have $\alpha_{i,i}$ as the common irreducible constituent for each i by Lemma 3.2 and hence they are connected by an edge in $\Gamma_{S_{\lambda, \psi}}(G, B)$. Furthermore, for $0 \leq i \leq (q-3)/2$, let $k = (q-1)/2$. Then $\delta_{2i} = \gamma_i$ is the same as $\delta_{2(i+k)} = \gamma_{(i+k)}$ as explained in Section 2.3. Hence ψ_i and ψ_{i+k} are joined by an edge in $\Gamma_{S_{\lambda, \psi}}(G, B)$. Hence there is a path that connects λ_i, ψ_i, ψ_{i+k} and λ_{i+k} in this order for each $i = 0, 1, \ldots, (q-3)/2$. It implies that, in $\Gamma_{S_{\lambda, \psi}}(G, B)$, there are $(q-1)/2$ connected component. Each of them contains 4 vertices and there is a non-closed path that connects these 4 vertices.

We consider $\Gamma_S(G, B)$. First, note that $(\psi_{i,j})_B$ has no common irreducible constituent with $(\lambda_i)_B$ since $i \neq j$. There are $(q-1)(q-2)/2$ pairs of $\{i, j\}$ such that $0 \leq i < j \leq q-2$. We call a pair odd if $i + j$ is odd and even otherwise. There are $(q-1)^2/4$ odd pairs and $(q-1)(q-3)/4$ even pairs. If $\{i, j\}$ is odd and $\{i', j'\}$ is even, then obviously there is no common irreducible constituent between $(\psi_{i,j})_B$ and $(\psi_{i', j'})_B$. In this case, $(\psi_{i,j})_B$ also does not have any common irreducible constituent with any vertex in the set $S_{\lambda, \psi}$. For two different odd pairs $\{i, j\}$ and $\{i'', j''\}$, without loss of generality, we assume that $i + j < i'' + j''$. $(\psi_{i,j})_B$ and $(\psi_{i'', j''})_B$ have δ_{i+j} as a common irreducible constituent if and only if $i + j = i'' + j''$ or $i + j + k = i'' + j''$ where $k = (q-1)$. For an odd m where $1 \leq m \leq q-4$, there are $(q-1)/2$ odd pairs of $\{i, j\}$ such that $i + j = m$ or $i + j = m + k$. Hence they account for
\((q - 3)/2\) disjoint copies of \(K_{(q-1)/2}\) in \(\Gamma_S(G, B)\). There are exactly \((q - 1)/2\) odd pairs of \(\{i, j\}\) such that \(i + j = q - 2\). It accounts for one copy of \(K_{(q-1)/2}\) in \(\Gamma_S(G, B)\). To conclude, after considering all odd pairs \(\{i, j\}\), they account for \((q - 1)/2\) disjoint copies of \(K_{(q-1)/2}\).

For two different even pairs \(\{i, j\}\) and \(\{i'', j''\}\), without loss of generality, we assume that \(i + j < i'' + j''\). For \(k = q - 1\), \((\psi_{(i+j)/2})_B, (\psi_{(i+j+k)/2})_B, (\psi_{i,j})_B\) and \((\psi_{i'',j''})_B\) have \(\delta_{i+j}\) as a common irreducible constituent if and only if \(i + j = i'' + j''\) or \(i + j + k = i'' + j''\). Recall that, by the second paragraph, each connected component in \(\Gamma_{\lambda,\psi}(G, B)\) is a path that connects four vertices where \(\psi_i\) and \(\psi_{i+(q-1)/2}\) are the two middle vertices along this path. There are \((q - 3)/2\) even pairs of \(\{i, j\}\) such that \(i + j = n\) or \(i + j = n + k\) where \(n\) is even and \(0 \leq n \leq q - 3\). Hence, for each connected component, \((q - 3)/2\) vertices are joined with the two middle vertices. So, on each component, there is a copy of \(K_{((q-3)/2)+2} = K_{(q+1)/2}\) as a subgraph. For each such subgraph, the two vertices \(\lambda_i, \lambda_{i+k}\) are connected to \(\psi_{i}\) and \(\psi_{i+k}\) respectively. Note that \(\psi_{i}\) and \(\psi_{i+k}\) are adjacent. Hence each connected component is a copy of \(Q_{((q+1)/2)+2} = Q_{(q+5)/2}\) in \(\Gamma_S(G, B)\). There are \((q - 1)/2\) copies of it by the second paragraph and hence the theorem.

3.2 \(\Gamma(B, D)\)

First we look at the restrictions of the irreducible characters of \(B\) to \(D\).

Lemma 3.6 By the notations in Section 1, Definition 2.7, Theorem 2.4 and Lemma 2.6, we have the following equations:

\[
(\alpha_{i,j})_D = f_{i,j}
\]

\[
(\delta_i)_D = \sum_{x=0}^{q-2} f_{x,i-x}
\]

for \(0 \leq i, j \leq q - 2\).

Proof. By Theorem 2.4, we have the following table:

\[
\begin{array}{|c|c|c|}
\hline
& sI & d_{s,t} & d_{t,s} \\
\hline
(\alpha_{i,j})_D & \psi_{i+j} & \psi_{i+j} & \psi_{i+j} \\
\hline
(\delta_i)_D & (q - 1)\psi_i & 0 & 0 \\
\hline
\end{array}
\]

It is clear that

\[
(\alpha_{i,j})_D = f_{i,j}
\]
for all $0 \leq i, j \leq q - 2$. For the second equation, we calculate the values of
$\sum_{x=0}^{q-2} f_{x,i-x}$ on each conjugacy class. On sI, we have

$$\sum_{x=0}^{q-2} f_{x,i-x}(sI) = \sum_{x=0}^{q-2} \overline{s}^{x+i-x} = (q - 1)\overline{s}$$

On $d_{s,t}$,

$$\sum_{x=0}^{q-2} f_{x,i-x}(d_{s,t}) = \sum_{x=0}^{q-2} \overline{s}^{x+t-x} = \overline{t} \sum_{x=0}^{q-2} (\overline{s}/\overline{t})^x$$

$$= \frac{\overline{t}(\overline{s}/\overline{t})^{q-1} - 1}{\overline{t} - 1}.$$ The last equation is valid since $\overline{s} \neq \overline{t}$. It is equal to 0 because $\overline{s}/\overline{t} \in \mathbb{F}_q^*$ and hence $\overline{t}^{q-1} = 1$. A similar calculation shows that $\sum_{x=0}^{q-2} f_{x,i-x}(d_{t,s}) = 0$. Hence we have

$$(\delta_i)_D = \sum_{x=0}^{q-2} f_{x,i-x}$$

and the lemma.

Let S_n be the star graph of n vertices. We are in the position to describe

$$\Gamma(B, D).$$

Theorem 3.7 Let B be the Borel subgroup of $GL(2, q)$ and D be the diagonal subgroup of $GL(2, q)$. The graph $\Gamma(B, D)$ has $(q - 1)$ disjoint copies of S_q.

Proof. Let $S_\alpha \subset V(\Gamma(B, D))$ be the set

$$S_\alpha = \{\alpha_{i,j} \mid 0 \leq i, j \leq q - 2\}$$

and let $\Gamma_{S_\alpha}(B, D)$ be the subgraph of $\Gamma(B, D)$ spanned by S_α. For two different pairs of (i, j) and (i', j'), $(\alpha_{i,j})_D$ and $(\alpha_{i',j'})_D$ have no common irreducible constituent by Lemma 3.6. Hence, $\Gamma_{S_\alpha}(B, D)$ has $(q - 1)^2$ isolated vertices.

For $i \neq i'$, $(\delta_i)_D$ and $(\delta_{i'})_D$ have no common irreducible constituent by Lemma 3.6. But each $(\delta_i)_D$ has common irreducible constituents with $(\alpha_{x,i-x})_D$ where $x = 0, 1, ..., q - 2$. (By abuse of notation, if $i - x$ is not in the range $[0, 1, ..., q - 2]$, let $(i - x)'$ represent the value in $[0, q - 2]$ that is in the same equivalence class as $i - x$ modulo $q - 1$. Then we take $(i - x)'$ to be $i - x$ in the notation $\alpha_{x,i-x}$.) Hence, for each $i = 0, 1, ..., q - 2$, δ_i is connected to $\alpha_{x,i-x}$ by an edge where $x = 0, 1, ..., q - 2$. It accounts for a copy of S_q. And there are $q - 1$ of such copies as i ranges from 0 to $q - 2$. Hence the theorem.
References

Received: October 23, 2013