On Projective Ideals in Commutative Rings

Sarab A. Al-Taha

Department of Mathematics, Faculty of Sciences
Al Zaytoonah University, Amman Jordan
sarabaltaha@yahoo.com

Copyright © 2013 Sarab A. Al-Taha. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let R be a commutative with identity, let a be a nonzero element of R as in [1], the principal ideal I = <a> of R is projective if, and only if there exists a′∈ R such that a = a a′ and ann(a)=ann(a′). We prove the following result among others, the principal ideal I=<a>is projective ideal in R if, and only if <a/a'> is projective in Rs_a if, and only if <a/a'> is projectivein Rs_a[x] where S_a={a′∈R: a=aa′}. [2]

Keywords: commutative rings, projective ideals, multiplicative closed sets, quotient rings
1. Introduction

Let \(R \) be a commutative ring with identity, let \(a \in R \) as in [1] the principal ideal \(I=\langle a \rangle \) is projective in \(R \) if, and only if there exists \(a' \in R \) such that:
\[
a = a \cdot a' \quad (1)
\]
and
\[
\text{ann}(a) = \text{ann}(a'). \quad (2)
\]
Where \(\text{ann}(a) : \text{Annihilator of } a = \{ x \in R : ax = 0 \} \). \quad (3)

Example:
The principal ideal \(I = \langle 2 \rangle \) is projective ideal in \(\mathbb{Z}_6 \) while the principal ideal \(I = \langle 3 \rangle \) is not projective ideal in \(\mathbb{Z}_6 \).

As in [1], the finitely generated ideal \(I = \langle a_1, a_2, \ldots, a_n \rangle \) of \(R \) is projective ideal if, and only if there exists an \(nxn \) matrix \(M = (m_{ij}) \) with elements in \(R \) such that:
\[
(a_1, a_2, \ldots, a_n) = (a_1, a_2, \ldots, a_n) M \quad (4)
\]
and
\[
\text{U}^\perp = \text{ann} (M) \quad (5)
\]
where
\[
\text{U}^\perp = \{ x = (x_1, x_2, \ldots, x_n) \in R^n : Ux^t = a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0 \} \quad (6)
\]
and
\[
\text{ann}(M) = \{ x = (x_1, x_2, \ldots, x_n) \in R^n : Mx^t = 0^t \} \quad (7)
\]
Throughout this work we use the following notations:

- \(R \): Commutative ring with identity.
- \(N(R) \), the nil radical of \(R = \{ x \in R : x^n = 0 \text{ for some } n \in \mathbb{Z}_+ \} \)
- \(S_a = \{ a' \in R : a = aa' \} \) \quad [2] \quad (8)
- \(R_s = \{ a/a' : a \in R, a' \in S_a \} \) \quad [2] \quad (9)
- \(R[x] \): The ring of polynomials over \(R \) in the indeterminate \(x \).
- \(R_{sa}[x] \): The ring of polynomials over \(R_{sa} \) in the indeterminate \(x \).
- \(R[x_1, x_2, \ldots, x_n] \): The ring of polynomials over \(R \) in the indeterminate \(x_1, x_2, \ldots, x_n \).
2. Main Results

In this section we state down the following results:

Theorem (1): Let R be a commutative ring with identity such that N(R) = 0 let a be a nonzero element in R then \(<a>\) is projective ideal in R if, and only if \(<a^n>\) is projective.

Theorem (2): Let R be a commutative ring with identity, let a be a nonzero element in R, b is a nonzero divisor of R the principal ideal \(<ab>\) is projective ideal in R if, and only if \(<a>\) is projective.

Theorem (3): Let R be a commutative with identity, a be a nonzero element of R, the principal ideal \(<a>\) of R is projective in R if, and only if \(<a>\) is projective in \(R[x]\).

Theorem (4): Let R be a commutative with identity, a be a nonzero element of R, the principal ideal \(<a>\) is projective in R if, and only if \(<a>\) is projective in \(R[x,y]\).

Corollary (1): Let R be a commutative with identity, a be a nonzero element of R, the principal ideal \(<a>\) is projective in R if, and only if \(<a/a'>\) is projective in \(R_{Sa}\).

Theorem (5): Let R be a commutative with identity, a be a nonzero element of R, the principal ideal \(<a>\) is projective in R if, and only if \(<a/a'>\) is projective in \(R_{Sa}[x_1, x_2, \ldots, x_n]\).

Corollary (2): Let R be a commutative with identity, a be a nonzero element of R, \(<a/a'>\) is projective in \(R_{Sa}\) if, and only if \(<a/a'>\) is projective in \(R_{Sa}[x_1, x_2, \ldots, x_n]\).

Theorem (6): Let R be a commutative with identity, a be a nonzero element of R, \(a_1, a_2, \ldots, a_n\) are nonzero elements of R, the finitely generated ideal \(I=\langle a_1, a_2, \ldots, a_n\rangle\) is projective in R if and only if \(I=\langle a_1, a_2, \ldots, a_n\rangle\) is projective in \(R[x]\).

Corollary (3): Let R be a commutative with identity, \(a_1, a_2, \ldots, a_n\) are nonzero elements of R, the finitely generated ideal \(I=\langle a_1, a_2, \ldots, a_n\rangle\) is projective in R if, and only if \(I=\langle a_1, a_2, \ldots, a_n\rangle\) is projective in \(R[x_1, x_2, \ldots, x_n]\).
Theorem (7): Let \(R \) be a commutative ring with identity. If the principal ideals \(<a_1>, <a_2>\ldots<a_n>\) are projective ideals in the ring \(R \) then the ideal \(<a_1, a_2\ldots a_n>\) is projective ideal in the ring \(R^n=R\oplus R\oplus\ldots\oplus R \).

3. Proofs

In this section we prove our main results.

Proof of theorem (1)

Assume that \(<a>\) is projective ideal, using (1) and (2) there exists \(a'\in R \) such that:

\[
a = aa' \tag{11}
\]

and \(\text{ann}(a)=\text{ann}(a') \tag{12} \)

Using (11) we get \(a^n = a^n a' \)

Now, to show that:

\(\text{ann}(a^n) = \text{ann}(a') \)

let \(x \in \text{ann}(a^n) \) this implies that \(xa^n = 0 \), clearly we get \(x^n a^n = 0 \).

Since \(N(R) = 0 \), it follows that \(xa = 0 \) therefore \(x\in\text{ann}(a) = \text{ann}(a') \) and hence

\(\text{ann}(a^n) \subseteq \text{ann}(a') \)

To prove the converse, let \(x \in \text{ann}(a') \) using (12) it follows that \(x\in\text{ann}(a) \) this implies that

\(xa = 0 \) and hence \(xa^n = 0 \) therefore \(x\in\text{ann}(a^n) \), we get \(\text{ann}(a') \subseteq \text{ann}(a^n) \).

To prove the other half of the theorem. Suppose that \(<a^n>\) is projective, using (1) and (2) there exists \(a'\in R \) such that:

\[
a^n = a^n a' \tag{13}
\]

and \(\text{ann}(a^n) = \text{ann}(a') \tag{14} \)

Using (13) we get \(a^n (1-a') = 0 \), this implies that \(a^n (1-a')^n = 0 \), since \(N(R) = 0 \) we get

\(a = aa' \).
As it is shown in the first part of this theorem we get that:
\[\text{ann}(a) = \text{ann}(a^n) = \text{ann}(a') \]
therefore \(<a>\) is projective.

Proof of theorem (2)

Since \(<ab>\) is projective using (1) and (2) there exists \(c' \in R\) such that:
\[ab = abc' \]
and \(\text{ann}(ab) = \text{ann}(c') \)

Since \(b\) is nonzero divisor, we get \(a = ac'\)
and \(\text{ann}(ab) = \text{ann}(a) = \text{ann}(c') \) therefore \(<a>\) is projective

Proof of theorem (3)

The first part can be shown easily. Now to prove the converse assumes that \(<a>\) is projective ideal in \(R[x]\), using (1) and (2) there exists \(g = a_0 + a_1x + \cdots + a_nx^n \in R[x]\) such that:
\[a = ag \] \hspace{1cm} (15)
and \(\text{ann}(a) = \text{ann}(g) \) \hspace{1cm} (16)

Using (16), it follows from [3] that \(a = aa_0\)

To show that: \(\text{ann}(a) = \text{ann}(a_0) \)

Let \(b \in \text{ann}(a)\) using (3), it follows that that \(ba = 0\) using (16) we get \(bg = 0\) this implies that \(ba_0 = 0\) \hspace{1cm} [3]

Thus \(b \in \text{ann}(a_0)\).

Now, let \(b \in \text{ann}(a_0)\), using (3), it follows that \(ba_0 = 0\) directly \(baa_0 = 0\)

Using (17) we get \(ba = 0\), therefore \(b \in \text{ann}(a)\).

Thus, \(\text{ann}(a) = \text{ann}(a_0) \)

Proof of Theorem (4):

The first part can be shown easily. Next, let \(<a>\) be projective ideal in \(R[x,y]\), using definition of projective ideal, there exists
\[f = \sum_{j=0}^{n} \sum_{i=0}^{n} a_{ij} x^i y^j \in R[x, y] \]

Such that:
\[a = af \] \hspace{1cm} (18)

and
\[\text{ann}(a) = \text{ann}(f) \] \hspace{1cm} (19)

Using (18), it follows from [4] that:
\[a = aa_{00} \]

Now to show that \(\text{ann}(a) = \text{ann}(aa_{00}) \)

Let \(b \in \text{ann}(a) \) using (19), it follows that \(bf = 0 \) using (3) we get that \(b \in \text{ann}(f) \) this implies that \(ba_{00} = 0 \) \hspace{1cm} [4].

Now, let \(b \in \text{ann}(aa_{00}) \), using (3) it follows that \(ba_{00} = 0 \) directly \(baa_{00} = 0 \).

Since \(a = aa_{00} \), we get that \(ba = 0 \). This completes the proof.

Proof of corollary (1)

The proof of this corollary comes directly from the definition of \(R[x_1, x_2, \ldots, x_n] \) which is equal to \(R[x_1, x_2, \ldots, x_{n-1}] [x_n] \) \hspace{1cm} [5] and by using induction on theorem (2).

Proof of theorem (5):

Assume that \(<a> \) is projective in \(R \), using (1) and (2) it follows that there exists \(c \in R \) such that:
\[a = ac', \text{ hence } c' \in s_a \]

and \(\text{ann}(a) = \text{ann}(c') \) \hspace{1cm} (20)

It’s clear that there exists \(c'/1 \in R_{s_a} \) such that:
\[a/a' = a/a'.c'/1 \]

To show that \(\text{ann}(a/a') = \text{ann}(c'/1) \), let \(x/x' \in \text{ann}(a/a') \) using (3) it follows that
\[x/x'.a/a' = 0 \]

This means that there exists \(b \in s_a \) such that \(b'xa = 0 \) \hspace{1cm} [4]

Using definition of the multiplicatively closed set \(s_a \), it follows that \(xa = 0 \) using (20) we get \(xc' = 0 \) and therefore \(x/x'.c'/1 = 0 \).
Thus \(x/x'\epsilon\text{ann}(c'/1) \)

Now, let \(x/x'\epsilon\text{ann}(c'/1) \), using (3) it follows that \(x/x'.c'/1=0 \) this means that there exists \(b'\epsilon s_a \) such that \(b'xc'=0 \) \[4\]

Directly, we get that \(b'xc'=0 \) since \(a=ac' \), we get \(b'xa=0 \) therefore \(xa=0 \) this implies that \(x/x'.a/a'=0 \) thus we prove that \(x/x'\epsilon\text{ann}(a/a') \).

Proof of corollary (2)

The proof of this corollary comes directly by using corollary (1).

Proof of theorem (6)

The first part can be proved easily.

To prove the converse, suppose that the finitely generated ideal \(I=<a_1, a_2\ldots a_n> \) is projective in \(R[x] \) using (3) and (4) there exists a matrix

\[
M = \left(\begin{array}{ccc}
 f_{11} & \cdots & f_{1n} \\
 \vdots & \ddots & \vdots \\
 f_{n1} & \cdots & f_{nn}
\end{array}\right),
\]

where

\[
f_{ij} = b_{ij}x^i + \cdots + b_{ijn}x^n \in R[x], \quad 1 \leq i,j \leq n
\]

Such that:

\[
(a_1, a_2\ldots a_n) = (a_1, a_2\ldots a_n) M
\]

and

\[
\text{ann}(a_1, a_2\ldots a_n) = \text{ann} M
\]

using (21) it follows from [4] that:

\[
(a_1, a_2\ldots a_n) = (a_1, a_2\ldots a_n) \left(\begin{array}{ccc}
 b_{11} & \cdots & b_{1n} \\
 \vdots & \ddots & \vdots \\
 b_{n1} & \cdots & b_{nn}
\end{array}\right)
\]

Using (22) it follows from [4] that

\[
\text{ann}(a_1, a_2\ldots a_n) = \text{ann} \left(\begin{array}{ccc}
 b_{11} & \cdots & b_{1n} \\
 \vdots & \ddots & \vdots \\
 b_{n1} & \cdots & b_{nn}
\end{array}\right)
\]

Proof of theorem (7)

Since \(<a_i> \) is projective in \(R \) for each \(i=1,2\ldots,n \) using (1) and (2), there exist \(a'_i \epsilon R \) \(i=1,2\ldots,n \) such that:
\[a_i = a_i', \quad i = 1, 2, \ldots, n \]
and
\[\text{ann } a_i = \text{ann } a_i', \quad i = 1, 2, \ldots, n \]

It is clear that there exists a matrix
\[M = \begin{pmatrix} a_1' & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_n' \end{pmatrix} \]
whose entries belong to \(R \)
such that:
\[(a_1, a_2, \ldots, a_n) = (a_1, a_2, \ldots, a_n) M \]
and
\[\text{ann } (a_1, a_2, \ldots, a_n) = \text{ann } M \]

References

Received: July 13, 2013