On the Injective Galois Map

Xiaolong Jiang

Department of Mathematics
Zhongshan University
Guangzhou, 510257, P.R. China
mcsjxl@mail.sysu.edu.cn

George Szeto

Department of Mathematics
Bradley University
Peoria, Illinois 61625, USA
szeto@bradley.edu

Abstract

Let \(B \) be a Galois extension of \(B^G \) with Galois group \(G \), and \(\alpha : H \rightarrow B^H \) the Galois map from the set of subgroups of \(G \) to the set of subextensions of \(B^G \). Then a sufficient condition on a set with a maximal number of subgroups is given under which \(\alpha \) is one-to-one on the set. Moreover, the collection of such sets of subgroups is computed, and thus we can determine which Galois group \(H \) is unique for the Galois extension \(B \) over \(B^H \).

Mathematics Subject Classification: 16S35, 16W20

Keywords: Galois extensions, Separable extensions, Azumaya algebras, Galois map.

1 Introduction

The Galois theory for rings has been intensively investigated ([1], [2], [3], [4], [6], [7], [8]). The fundamental theorem was generalized from Galois extensions for fields to commutative rings and to commutative partial Galois extensions ([1], [3], [7], [9], [10]). Let \(B \) be a ring Galois extension of \(B^G \) with Galois group \(G \), \(C \) is the center of \(B \), \(J_g = \{ b \in B \mid bx = g(x)b \text{ for each } x \in B \} \) for \(g \in G \), and \(V_B(B^G) \) the commutator subring of \(B^G \) in \(B \). Then \(V_B(B^G) = \oplus \sum_{g \in G} J_g \) ([5], Proposition 1). We note that \(J_g = \{0\} \) for each \(g \neq 1 \in G \) when \(B \)
is commutative. But \(J_g \) may not be \(\{0\} \) for a \(g \neq 1 \in G \) when \(B \) is non-commutative. Recently, it was shown ([9], Theorem 3.4) that if \(B \) is a Galois extension of \(B^G \) with Galois group \(G \) such that \(J_g \neq \{0\} \) for each \(g \in G \), then the Galois map \(\alpha : H \rightarrow B^H \) is one-to-one. This implies that \(\alpha \) is one-to-one for all central Galois algebras ([2]) and Hirata separable Galois extensions ([6]). Observing that \(J_g = \{0\} \) for some \(g \in G \) for a Galois extension, we shall give a collection of sets \(\mathcal{F} \) of subgroups such that each \(\mathcal{F} \) is a set of maximal number of subgroups satisfying some condition on which \(\alpha \) is one-to-one. This generalizes the above result as given in [9] to a Galois extension with some \(J_g = \{0\} \). Also, our result leads to a sufficient condition for the uniqueness of Galois group for a Galois extension.

2 Preliminaries

Throughout this paper, we call \(B \) a Galois extension of \(B^G \) with Galois group \(G \) if \(B \) is a ring with 1 and \(G \) a finite automorphism group of \(B \) such that there exist \(\{a_i, b_i \in B \mid \sum_{i=1}^{m} a_i g(b_i) = \delta_{1g} \text{ for some integer } m\} \) where \(B^G \) is the set of elements in \(B \) fixed under each element in \(G \). Let \(A \) be a ring extension of \(D \). Then \(A \) is called a separable extension of \(D \) if the multiplication map \(A \otimes_D A \rightarrow A \) splits as an \(A \)-bimodule homomorphism, and \(A \) is an Azumaya algebra over \(C \) if \(A \) is a separable extension of its center \(C \). For more about Galois extensions, separable extensions, and Azumaya algebras, see [3].

3 The Injective Galois Map

In this section, let \(B \) be a Galois extension of \(B^G \) with Galois group \(G \), \(C \) is the center of \(B \), \(J_g = \{b \in B \mid bx = g(x)b \text{ for each } x \in B\} \) for each \(g \in G \). For a subgroup \(H \) of \(G \), let \(S_H = \{g \in H \mid J_g \neq \{0\}\} \) and \(T_H = \{g \in H \mid J_g = \{0\}\} \). We shall give a set \(\mathcal{F} \) with a maximal number of subgroups such that the Galois map \(\alpha \) is one-to-one on \(\mathcal{F} \). We begin with two important properties of \(C \)-modules \(\{J_g \mid g \in S_G\} \).

Lemma 3.1 ([5], Proposition 1) Let \(B \) be a Galois extension of \(B^G \) with Galois group \(G \) and \(V_B(B^G) \) the commutator subring of \(B^G \) in \(B \). Then \(V_B(B^G) = \bigoplus_{g \in G} J_g \).

Lemma 3.2 Let \(D \subset S_G \) and \(\beta : D \rightarrow \bigoplus_{g \in D} J_g \). Then \(\beta \) is one-to-one from the set of subsets \(D \) of \(S_G \) to the set \(\{\bigoplus_{g \in D} J_g \mid D \subset S_G\} \).

Proof. By Lemma 3.2 in [9], \(\beta \) is one-to-one on the set \(\{D = \{g\} \mid g \in S_G\} \). Next, let \(D, E \subset S_G \) such that \(\beta(D) = \beta(E) \). Then \(\bigoplus_{d \in D} J_d = \bigoplus_{e \in E} J_e \). Assume there exists some \(d \in D \) but not in \(E \). Then \(J_d \cap \bigoplus_{e \in E} J_e = \{0\} \).
Thus statement (1) holds.

Hence $J_d \not\subset \sum_{e \in E} J_e$; and so $\sum_{d \in D} J_d \neq \sum_{e \in E} J_e$. This contradiction implies that $D \subset E$. Similarly $E \subset D$. Thus $D = E$. Therefore β is one-to-one.

Next we give a collection of sets \mathcal{F} with a maximal number of subgroups of G such that α is one-to-one on \mathcal{F}.

Theorem 3.3 Let \mathcal{F} be a set with a maximal number of subgroups of G such that $S_{H'} \neq S_{H''}$ for $H' \neq H'' \in \mathcal{F}$. Then α is one-to-one on \mathcal{F}.

Proof. Let H' and $H'' \in \mathcal{F}$ such that $\alpha(H') = \alpha(H'')$. Then $B^{H'} = B^{H''}$. Hence $V_B(B^{H'}) = V_B(B^{H''})$; that is, $\sum_{h \in S_{H'}} J_h = \sum_{h \in S_{H''}} J_h$ by Lemma 3.1 because B is a Galois extension of $B^{H'} (= B^{H''})$ with Galois groups H' and H''. Thus $S_{H'} = S_{H''}$ by Lemma 3.2. But then $H' = H''$ by the definition of \mathcal{F}. This shows that α is one-to-one on \mathcal{F}.

The following is a set of minimal subgroups as given in Theorem 3.3.

Theorem 3.4 Let $D \subset S_G$, $<D>$ the subgroup generated by the elements in D, and $\mathcal{F}_0 = \{<D>|D \subset S_G\}$. Then (1) $\mathcal{F}_0 = \{<S_H>|H \text{ is a subgroup of } G\}$, (2) \mathcal{F}_0 is a set with a maximal number of subgroups of G such that $S_{<D>} \neq S_{<E>}$ for $<D> \neq <E>$ where $D, E \subset S_G$. (that is, \mathcal{F}_0 is one of \mathcal{F} with a maximal number of subgroups of G as given in Theorem 3.3), and (3) Let $|\mathcal{F}|$ be the number of subgroups in \mathcal{F}. Then $|\mathcal{F}_0| = |\mathcal{F}|$.

Proof. (1) For each subgroup H, since $S_H \subset S_G$, $<S_H> \in \mathcal{F}_0$. Conversely, for any $<D> \in \mathcal{F}_0$, $S_{<D>} \subset <D>$, so $<S_{<D>}> = <D>$. Noting that $<D>$ is a subgroup of G, we have $\mathcal{F}_0 \subset \{<S_H>|H \text{ is a subgroup of } G\}$. Thus statement (1) holds.

(2) Since $D \subset S_{<D>}$, $<S_{<D>}> = <D>$ for any $D \subset S_G$. Hence $S_{<D>} \neq S_{<E>}$ for $<D> \neq <E>$. It remains to show that \mathcal{F}_0 has a maximal number of subgroups of G satisfying the above property. Since $S_H \subset S_G$ for any subgroup H, $H \notin \mathcal{F}_0$ unless $H = <S_H>$. Thus \mathcal{F}_0 is one of \mathcal{F} as given in Theorem 3.3.

(3) Let \mathcal{F} be a set with a maximal number of subgroups of G such that $S_H \neq S_L$ for $H \neq L \in \mathcal{F}$. We define a map $f : \mathcal{F} \rightarrow \mathcal{F}_0$ by $f(H) = <S_H>$. We claim that f is one-to-one and onto. In fact, let $f(H) = f(L)$ for $H, L \in \mathcal{F}$; then $<S_H> = <S_L>$. Thus $S_{<S_H>} = S_{<S_L>}$. Since $S_H = S_{<S_H>}$ and $S_L = S_{<S_L>}$, $S_H = S_L$. But then $H = L$ by the definition of \mathcal{F}. Also by part (1), f is onto. Therefore $|\mathcal{F}_0| = |\mathcal{F}|$.

By Theorem 3.4, we shall compute the number of \mathcal{F} as given in Theorem 3.3. Let $\mathcal{C} = \{D|D \subset S_G\}$ and $\mathcal{D} = \{H|H \text{ is a subgroup of } G\}$. Define a
relation \sim \text{ on } \mathcal{C} by \, D \sim E \text{ if } < D > = < E > \text{ for } D, E \in \mathcal{C}, \text{ and } \approx \text{ on } \mathcal{D} \text{ by } H \approx L \text{ if } S_H = S_L. \text{ Then it is clear that both } \sim \text{ and } \approx \text{ are equivalent relations. Denote the equivalent class of } D \text{ by } [D] \text{ for } D \in \mathcal{C}, \text{ and the equivalent class of } H \text{ by } \mathcal{H} \text{ for } H \in \mathcal{D}. \text{ Then } \mathcal{C} = \cup_{D \in \mathcal{S}_G} [D] \text{ and } \mathcal{D} = \mathcal{H} \text{ for } H \in \mathcal{D}. \text{ We count the number of } \mathcal{F} \text{ as given in Theorem 3.3.}

\textbf{Theorem 3.5} (1) \, |\mathcal{F}_0| = \text{ the number of } \{|[D]| [D] \subset S_G\} \text{ and (2) Let } |\mathcal{H}| \text{ be the number of subgroups in } \mathcal{H} \text{ for a subgroup } H. \text{ Then the number of } \mathcal{F} \text{ as given in Theorem 3.3} = \prod_{<D> \in \mathcal{F}_0} <D>, \text{ a product of } |<D>| \text{ for } <D> \in \mathcal{F}_0.

\textbf{Proof.} (1) \text{ Since } \mathcal{F}_0 = \{< D > | D \subset S_G\} \text{ and } < D > = < E > \text{ implies } D \sim E, \, |\mathcal{F}_0| = \text{ the number of } \{|[D]| [D] \subset S_G\}.

(2) \text{ By Theorem 3.4-(3), } f : \mathcal{F} \longrightarrow \mathcal{F}_0 \text{ by } f(H) = < S_H > \text{ for a subgroup } H \in \mathcal{F} \text{ is a one-to-one correspondence. Since there are } |< S_H >| \text{ subgroups in } < S_H >, \text{ the number of } \mathcal{F} \text{ as given in Theorem 3.3} = \prod_{H \in \mathcal{D}} |< S_H >| \text{ where } H \in \mathcal{D} \text{ are representatives of } \{\mathcal{H}\}. \text{ But } \{< S_H > | H \in \mathcal{D}\} = \mathcal{F}_0 \text{ by Theorem 3.4-(1), so the number of } \mathcal{F} \text{ as given in Theorem 3.3} = \prod_{<D> \in \mathcal{F}_0} |<D>|, \text{ a product of } |<D>| \text{ for } <D> \in \mathcal{F}_0.

\section{4 The Double Centralizer Property}

In Theorem 3.3, we give a set \mathcal{F} with a maximal number of subgroups of \textit{G} such that the Galois map \alpha : H \longrightarrow B^H \text{ is one-to-one for } H \in \mathcal{F}. \text{ In this section, we shall show that if the Galois extension } B \text{ of } B^G \text{ with Galois group } G \text{ satisfies the double centralizer property on the set } \{B^H | H \text{ is a subgroup of } G\}, \text{ then any set } \mathcal{S} \text{ of subgroups on which } \alpha \text{ is one-to-one is contained in some } \mathcal{F}, \text{ where we call } B \text{ satisfying the double centralizer property on } \{B^H | H \text{ is a subgroup of } G\} \text{ if } V_B(V_B(B^H)) = B^H \text{ for each subgroup } H.

\textbf{Theorem 4.1} \text{ Assume } B \text{ satisfies the double centralizer property for } \{B^H | H \text{ is a subgroup of } G\}. \text{ Let } \mathcal{S} \text{ be a set of subgroups of } G \text{ such that } \alpha \text{ is one-to-one on } \mathcal{S}. \text{ Then } \mathcal{S} \subset \mathcal{F} \text{ for some } \mathcal{F} \text{ as given in Theorem 3.3.}

\textbf{Proof.} \text{ We first claim that for subgroups } K \text{ and } L \text{ of } G, \alpha(K) = \alpha(L) \text{ if and only if } S_K = S_L. \text{ In fact, } \alpha(K) = \alpha(L) \text{ implies } S_K = S_L \text{ by the argument in the proof of Theorem 3.3. Conversely, let } S_K = S_L. \text{ Then } \oplus_{k \in K} J_k = \oplus_{l \in L} J_l. \text{ Hence } V_B(B^K) = V_B(B^L) \text{ by Lemma 3.1. Taking the commutators both sides, we have } B^K = B^L \text{ because } B \text{ satisfies the double centralizer property for } \{B^H | H \text{ is a subgroup of } G\}. \text{ Thus } \alpha(K) = B^K = B^L = \alpha(L). \text{ Next, for } K, L \in \mathcal{S} \text{ such that } S_K = S_L, \alpha(K) = \alpha(L) \text{ by the above result. Since } \alpha \text{ is one-to-one on } \mathcal{S} \text{ by hypothesis, } K = L. \text{ This implies that } \mathcal{S} \text{ is a set with subgroups } H', H'' \text{ such that } S_{H'} \neq S_{H''} \text{ if } H' \neq H'' \text{. Thus } \mathcal{S} \text{ is contained}
in some \mathcal{F} with a maximal number of subgroups such that $S_{H'} \neq S_{H''}$ for $H' \neq H'' \in \mathcal{F}$ as given in Theorem 3.3.

The following results are immediate from Theorem 4.1.

Corollary 4.2 Assume B satisfies the double centralizer property for $\{B^H | H \text{ is a subgroup of } G\}$. Then the collection of the sets \mathcal{F} of subgroups as given in Theorem 3.3 is the full collection of the sets each with a maximal number of subgroups on which α is one-to-one.

Corollary 4.3 Assume B satisfies the double centralizer property for $\{B^H | H \text{ is a subgroup of } G\}$. Then α is one-to-one if and only if $S_H \neq S_L$ for subgroups $H \neq L$ of G.

Remark 4.4 The sufficiency holds for any Galois extension B by Theorem 3.3, so it does not need the double centralizer property for B.

5 The Uniqueness of a Galois Group

Let B be a Galois extension of B^G with Galois group G and H a proper subgroup of G. It is clear that B is a Galois extension of B^H with Galois group H. In this section, we shall discuss which Galois group H is unique for the Galois extension B over B^H. We define $H \simeq L$ if $\alpha(H) = \alpha(L)$ for subgroups H and L of G. It is clear that \simeq is an equivalent relation. We denote \tilde{H} the equivalent class of H. The following results are immediate.

Theorem 5.1 Let H be a proper subgroup of G and $|\tilde{H}|$ the number of subgroups in \tilde{H}. Then $|\tilde{H}| = 1$ if and only if H is unique for the Galois extension B over B^H.

Theorem 5.2 Let H be a proper subgroup of G. If $K = < S_K >$ for each $K \simeq H$, then H is unique for the Galois extension B over B^H.

Proof. Let K be a Galois group for B of B^H. Then $B^K = B^H$; and so $K \simeq H$ and $S_K = S_H$. By hypothesis, $K = < S_K >$ and $H = < S_H >$, so $K = H$.

Also as defined in section 3, two subgroups $H \approx L$ if $S_H = S_L$. Let $|\overline{H}|$ be the number of subgroups in \overline{H}. We give more subgroups each being a unique Galois group for a Galois extension B.

Theorem 5.3 Let H be a proper subgroup of G. If $|\overline{H}| = 1$, then H is unique for the Galois extension B over B^H and $H = < S_H >$.
Proof. Let L be a Galois group for B of B^H. Then $B^L = B^H$; and so $S_L = S_H$ by Lemma 3.1 and Lemma 3.2. Hence $H \approx L$. By hypothesis, $|\overline{H}| = 1$, so $L = H$. Moreover, since $S_{<S_H>} = S_H$, $< S_H > \approx H$. Thus $< S_H > = H$ because $|\overline{H}| = 1$ again.

We note that if B satisfies the double centralizer property for $\{B^K | K \text{ is a subgroup of } G\}$, then the relations \approx and \simeq are the same. Then the following corollary is immediate.

Corollary 5.4 Assume B satisfies the double centralizer property for $\{B^K | K \text{ is a subgroup of } G\}$. Then H is a unique Galois group for the Galois extension B over B^H if and only if $|H| = 1$.

We conclude the present paper with a Galois extension B of B^G with the unique Galois group G.

Theorem 5.5 Let G and G' be Galois groups for B of B^G. If $G = < S_G >$, $G' = < S_{G'} >$, and $< S_G, S_{G'} >$ is a Galois group for B of B^G where $< S_G, S_{G'} >$ is the group generated by the elements in S_G and $S_{G'}$, then $G = G'$.

Proof. Since G and G' are Galois groups for B of B^G, $B^G = B'^G$. Since $G = < S_G >$, $G' = < S_{G'} >$, and $< S_G, S_{G'} >$ is a Galois group for B of B^G, $V_B(B^G) = V_B(B'^G) = V_B(B^{<S_G,S_{G'}>}) = \oplus \sum_{g \in S_G} J_g = \oplus \sum_{g \in S_{G'}} J'_g = \oplus \sum_{g \in S_{<S_G,S_{G'}>}} J_p$ by Lemma 3.1. Noting that $S_G \cup S_{G'} \subset S_{<S_G,S_{G'}>}$, we have that $S_G = S_{G'}$ by Lemma 3.2. By hypothesis, $G = < S_G >$, $G' = < S_{G'} >$, so $G = G'$.

ACKNOWLEDGEMENTS. This paper was written during a visit of the second author to the Mathematics Department of Zhongshan University, China in Summer 2011. The second author would like to thank Zhongshan University for the hospitality.

References

Received: August, 2011