On the Vanishing and Finiteness Properties of Generalized Local Cohomology Modules

Moharram Aghapournahr

Department of Mathematics
Faculty of Science, Arak University
Arak, 38156-8-8349, Iran
m-aghapour@araku.ac.ir

Abstract

Let R be a commutative noetherian ring, a an ideal of R and M, N finite R–modules. We prove that the following statements are equivalent.

(i) $H^i_a(M, N)$ is finite for all $i < n$.
(ii) $\text{Coass}_R(H^i_a(M, N)) \subseteq V(a)$ for all $i < n$.
(iii) $H^i_a(M, N)$ is coatomic for all $i < n$.

If $\text{pd} M$ is finite and r be a non-negative integer such that $r > \text{pd} M$ and $H^i_a(M, N)$ is finite (resp. minimax) for all $i \geq r$, then $H^i_a(M, N)$ is zero (resp. artinian) for all $i \geq r$.

Mathematics Subject Classification: 13D45, 13D07

Keywords: Generalized local cohomology, Minimax module, coatomic module, Projective dimension

1 Introduction

Throughout R is a commutative noetherian ring. Generalized local cohomology was given in the local case by J. Herzog [5] and in the more general case by M.H Bijan-Zadeh [2]. Let a denote an ideal of a ring R. The generalized local cohomology defined by

$$H^i_a(M, N) \cong \lim_{\rightarrow n} \text{Ext}^i_R(M/a^n M, N).$$

This concept was studied in the articles [8], [5] and [9]. Note that this is in fact a generalization of the usual local cohomology, because if $M = R$,
then $H^i_a(R, N) = H^i_a(N)$. Important problems concerning local cohomology are vanishing, finiteness and artinianness results (see [6]).

In Section 2 we show in 2.1 that if M is finite and all generalized local cohomology modules $H^i_a(M, N)$ are coatomic for all $i < n$, then they are finite for all $i < n$. In fact this is another condition equivalent to Falting’s Local-global Principle for the finiteness of generalized local cohomology modules (see [1, Theorem 2.9]). In Theorem 2.2 we generalize Yoshida’s theorem ([10, Theorem 3.1]).

In Section 3, we prove in 3.2, that when M is a finite R–module of finite projective dimension such that the generalized local cohomology modules $H^i_a(M, N)$ are minimax modules for all $i \geq r$, (where $r > \text{pd} M$) then they must be artinian.

For unexplained terminology we refer to [3] and [4].

2 Finiteness and vanishing

An R–module M is called coatomic when each proper submodule N of M is contained in a maximal submodule N' of M (i.e. such that $M/N' \cong R/m$ for some $m \in \text{Max} R$). This property can also be expressed by $\text{Coass}_R(M) \subset \text{Max} R$ or equivalently that any artinian homomorphic image of M must have finite length. In particular all finite modules are coatomic. Coatomic modules have been studied by Zöschinger [12].

Theorem 2.1 Let R be a noetherian ring, a an ideal of R and M, N finite R–modules. The following statements are equivalent:

(i) $H^i_a(M, N)$ is coatomic for all $i < n$.

(ii) $\text{Coass}_R(H^i_a(M, N)) \subset V(a)$ for all $i < n$.

(iii) $H^i_a(M, N)$ is finite for all $i < n$.

proof: By [1, Theorem 2.9] and[12, 1.1, Folgerung] we may assume that (R, m) is a local ring.

(i) \Rightarrow (ii) It is trivial by the definition of coatomic modules.

(ii) \Rightarrow (iii) By [15, Satz 1.2] there is $t \geq 1$ such that $a^t H^i_a(M, N)$ is finite for all $i < n$. Therefore there is $s \geq t$ such that $a^s H^i_a(M, N) = 0$ for all $i < n$, and apply [1, Theorem 2.9].

(iii) \Rightarrow (i) Any finite R–module is coatomic.

The following results are generalizations of [10, Proposition 3.1].
Theorem 2.2 Let \((R, \mathfrak{m})\) be a local ring, \(a\) be an ideal of \(R\) and \(M\) be a finite module of finite projective dimension. Let \(N\) be a finite module and \(r > \text{pd} M\). If \(H^i_a(M, N)\) is finite for all \(i \geq r\), then \(H^i_a(M, N) = 0\) for all \(i \geq r\).

proof: We prove by induction on \(d = \dim N\). If \(d = 0\), By [9, Theorem 3.7], it follows that \(H^i_a(M, N) = 0\) for all \(i > \text{pd} M + \dim(M \otimes_R N)\) and so the claim clearly holds for \(n = 0\). Now suppose \(d > 0\) and \(H^i_a(M, N) = 0\) for all \(i > r\). It is enough to show \(H^r_a(M, N) = 0\). First suppose \(\text{depth}_R N > 0\). Take \(x \in m\) which is \(N\)–regular. Then \(\dim N/xN = d - 1\). The exact sequence

\[
0 \rightarrow N \rightarrow N
\]

induces the exact sequence

\[
H^r_a(M, N) \rightarrow H^r_a(M, N) \rightarrow H^r_a(M, N/xN) \rightarrow H^{r+1}_a(M, N) = 0
\]

It yields that \(H^i_a(M, N/xN) = 0\) for all \(i > r\). Hence by induction hypothesis we get \(H^r_a(M, N/xN) = 0\). Thus we have \(H^r_a(M, N) = 0\) by Nakayama’s lemma. Next suppose \(\text{depth}_R N = 0\). Put \(L = \Gamma_m(N)\). Since \(L\) have finite length, so we have \(\dim L = 0\) and therefore \(H^i_a(M, L) = 0\) for all \(i > \text{pd} M\). But from the exact sequence

\[
0 \rightarrow L \rightarrow N \rightarrow N/L \rightarrow 0
\]

we get the exact sequence

\[
\ldots \rightarrow H^r_a(M, L) \rightarrow H^r_a(M, N) \rightarrow H^r_a(M, N/L) \rightarrow H^{r+1}_a(M, L) \rightarrow \ldots
\]

hence we have \(H^i_a(M, N) \cong H^i_a(M, N/L)\) for all \(i > \text{pd} M\), and we get the required assertion from the first step.

Theorem 2.3 Let \(a\) be an ideal of \(R\) and \(M\) a finite \(R\)–module of finite projective dimension. Let \(N\) be a finite \(R\)–module and \(r > \text{pd} M\). The following statements are equivalent:

(i) \(H^i_a(M, N) = 0\) for all \(i \geq r\).

(ii) \(H^i_a(M, N)\) is finite for all \(i \geq r\).

(iii) \(H^i_a(M, N)\) is coatomic for all \(i \geq r\).

proof: (i) \(\Rightarrow\) (ii) \(\Rightarrow\) (iii) Trivial. (iii) \(\Rightarrow\) (i) By use of theorem 2.2 and [12, 1.1, Folgerung] we may assume that \((R, \mathfrak{m})\) is a local ring. Note that coatomic modules satisfy Nakayama’s lemma. So the proof is the same as in theorem 2.2.

In the following corollary \(\text{cd}_a(M, N)\) denote the supremum of \(i\)’s such that \(H^i_a(M, N) \neq 0\).

Corollary 2.4 Let \(a\) an ideal of \(R\), \(M\) a finite \(R\)–module of finite projective dimension and \(N\) a finite \(R\)–module. If \(c := \text{cd}_a(M, N) > \text{pd} M\), then \(H^c_a(M, N)\) is not coatomic in particular is not finite.
3 Artinianness

Recall that a module M is a minimax module if there is a finite (i.e. finitely generated) submodule N of M such that the quotient module M/N is artinian. Thus the class of minimax modules includes all finite and all artinian modules. Moreover, it is closed under taking submodules, quotients and extensions, i.e., it is a Serre subcategory of the category of R–modules. Minimax modules have been studied by Zink in [11] and Zöschinger in [13, 14]. See also [7].

Lemma 3.1 Let M and N be two R–module. If $f : R \to S$ is a flat ring homomorphism, then

$$H^i_a(M, N) \otimes_R S \cong H^i_a(M \otimes_R S, N \otimes_R S).$$

proof: It is easy and we lift it to the reader.

Theorem 3.2 Let a an ideal of R and M a finite R–module of finite projective dimension. Let N be a finite R–module and $r > \text{pd } M$. If $H^i_a(M, N)$ is a minimax module for all $i \geq r$, then $H^i_a(M, N)$ is an artinian module for all $i \geq r$.

proof: Let p be a non-maximal prime ideal of R. Then by the definition of minimax module and lemma 3.1 $H^i_a(M, N)_p \cong H^i_{a|p}(M_p, N_p)$ is a finite R_p–module for all $i \geq r$. By theorem 2.2, $H^i_a(M, N)_p = 0$ for all $i \geq r$, thus $\text{Supp}_R(H^i_a(M, N)) \subseteq \text{Max } R$ for all $i \geq r$. By [7, Theorem 2.1], $H^i_a(M, N)$ is artinian for all $i \geq r$.

Let $q_a(M, N)$ denote the supremum of the i’s such that $H^i_a(M, N)$ is not artinian with the usual convention that the supremum of the empty set of integers is interpreted as $-\infty$.

Corollary 3.3 Let a an ideal of R, M a finite R–module of finite projective dimension and N a finite R–module. If $q := q_a(M, N) > \text{pd } M$, then $H^i_a(M, N)$ is not minimax in particular is not finite.

ACKNOWLEDGEMENTS. The author would like to thank the Arak University for the financial support.

References

Vanishing and finiteness of generalized local cohomology modules

Received: October, 2011