Some Remarks on Derivations of Leibniz Algebras

Chia Zargeh

Sama Technical and Vocational Training College, Islamic Azad University, Mahabad branch, Mahabad, Iran
ch.zarge@gmail.com

Abstract

The present paper concerns solvability of finite dimensional Leibniz algebras. As one of the main results of this paper, if Leibniz algebra L has a derivation $d : L \to L$, such that $L^n \subset d(L)$, for some $n > 1$, then L is solvable.

Mathematics Subject Classification: 17A32, 16W25

Keywords: Leibniz algebras, Derivation, Solvable

1 Introduction

In [3] F. Ladish proved that a finite group G, admitting an element a with the property $G' = [a, G]$ is solvable. Using this result M. shahryari in [4] proved a similar theorem for Lie algebras in more general framework, he showed that a finite dimensional Lie algebra L over a field of characteristic zero admitting an abelian algebra of derivations $D \leq Der(L)$, with the following property

$$L^n \subseteq \sum_{d \in D} d(L)$$

for some $n > 1$, is necessarily solvable.

In this work we consider some general properties of Leibniz algebra and its derivation. We extend some results obtained for derivations of Lie algebras in [4] to the case of Leibniz algebras.

It is worth noting that in 1955, Jacobson [2] proved essential theorem in which every Lie algebra over a field of characteristic zero admitting a nonsingular derivation is nilpotent.
2 PRELIMINARIES

In this section we give necessary definitions and preliminary concepts.

Definition 2.1 An algebra \((L, [-, -])\) over a field \(F\) is said to be a Leibniz algebra if for any \(x, y, z \in L\) the so-called Leibniz identity

\[
[x, [y, z]] = [[x, y], z] - [[x, z], y]
\]

holds.

A subalgebra \(H\) of a Leibniz algebra is said to be a two-sided ideal if \([L, H] \subseteq L\) and \([H, L] \subseteq L\). Let \(H\) and \(K\) be two sided ideals of \(L\). The commutator ideal of \(H\) and \(K\), denoted by \([H, K]\) is the two-sided ideal of \(L\) spanned by the brackets \([h, k]\), \([k, h]\), \(h \in H, k \in K\).

For a given Leibniz algebra \(L\), we define the lower central and derived series to the sequences of two-sided ideals defined recursively as follows:

\[
L^1 = L, \quad L^{k+1} = [L^k, L], \quad k \geq 1; \quad L^{[1]} = L, \quad L^{[s+1]} = [L^s, L^s], \quad s \geq 1.
\]

Definition 2.2 Leibniz algebra \(L\) is said to be solvable (nilpotent) if there exists \(n \in \mathbb{N}\) \((m \in \mathbb{N})\) such that \(L^{[n]} = 0\) \((L^m = 0)\).

Definition 2.3 For a Leibniz algebra \(L\), a Linear map \(d : L \rightarrow L\) is said to be a derivation if

\[
d[x, y] = [d(x), y] + [x, d(y)]
\]

for all \(x, y \in L\).

Definition 2.4 Inner derivations are a kind of derivations in which we have \(R_x : L \rightarrow L\) (for a fixed \(x \in L\)) such that \(R(x)(y) = [y, x]\) is a derivation.

Definition 2.5 The form \(f(a, b) = \text{tr}(R_a, R_b)\) for \(a, b \in L\) is called the killing form of the Leibniz algebra \(L\). A biLinear form \((a, b)\) on \(L\) satisfying the condition

\[
f([a, c], b) + f(a, [b, c]) = 0
\]

is called an invariant form on \(L\).

Theorem 2.6 Let \(L\) be a Leibniz algebra over an algebraically closed field of zero characteristic. Then \(L\) is solvable if and only if \(\text{tr}(R_a, R_b) = 0\) for any \(a \in L^2\).

proof. [1]
3 Main theorems and Results

In this section \(L \) is finite dimensional Leibniz algebra over a field \(K \) of characteristic zero. \(L^n \) and \(L^{[n]} \) represent the \(n \)-th terms of lower central series and derived series of \(L \), respectively. Also we denote by \(\text{Der}(L) \) the algebra of derivation of \(L \).

Definition 3.1 A subspace \(h \subset L \) is called left (resp. right) ideal if for any \(a \in h \) and \(x \in L \) one has \([x,a] \in h\) (resp. \([a,x] \in h\)), if \(h \) is both left and right ideal, then \(h \) is called two-sided ideal.

Theorem 3.2 Let \(L \) be a finite dimensional Leibniz algebra over \(K \) and suppose that \(U \) is a two-sided ideal. Suppose that there is an abelian subalgebra \(A \) such that \(U \subseteq [A,U] \), for some \(n > 1 \). Then \(U \) is solvable.

proof. We assume that \(K \) is algebraically closed, so we use Cartan’s criterion. Let \(S = U^n \) and define a bilinear form on \(L \) by

\[
f(\alpha, \beta) = \text{tr}(R_\alpha, R_\beta) \quad \text{for} \ \alpha, \beta \in L
\]

\(f \) is killing form of \(L \). Since \(S \) is an ideal of \(L \), \(f \) is associative,

\[
f([a,b], c) = f(a, [b,c]).
\]

Now we restrict \(f \) on \(S \), so we have

\[
f_S(a,b) = \text{tr}(R_a, R_b) \quad \text{for} \ \alpha, \beta \in S
\]

We apply Cartan’s criterion for algebra \(R(S) \) and consider as \(R(S) \)-module. If we consider \(R(S) = \frac{S}{Z(S)} \) where \(Z(S) \) is the center of \(S \). Obviously \(f(S,S') = 0 \) implies \(f(S',S') = 0 \), that is \(\text{tr}(R_a, R_b) = 0 \) for any \(a \in S \). Thus \(R(S) \) is solvable and solvability of \(R(S) \) is equivalent to solvability of \(S \). Hence \(U \) is solvable.

We now suppose that \(K \) is not necessarily algebraically closed, so we use the algebraic closure of \(K \). Let \(\bar{K} \) be algebraic closure of \(K \) and \(\bar{L} = \bar{K} \otimes_K A \). Now \(\bar{L} \) is a finite dimensional Leibniz algebra over \(\bar{K} \) in which \(\bar{K} \otimes_K U \) is an ideal and \(\bar{K} \otimes_u U \) is an abelian subalgebra. Further, we have

\[
(\bar{K} \otimes_K U)^n = \bar{K} \otimes_K U^n \subseteq [\bar{K} \otimes_K A, \bar{K} \otimes_K U].
\]

So \(\bar{K} \otimes_K U \) is solvable, that is, there exist a number \(m \) such that \((\bar{K} \otimes_K U)^{(m)} = 0 \). On the other hand,

\[
(\bar{K} \otimes_K U)^{(m)} = \bar{K} \otimes_K U^{(m)},
\]

therefore \(U^{(m)} = 0 \).
Corollary 3.3 Suppose that there exist an abelian subalgebra $A \leq L$ and an integer $n > 1$, such that $L^n \subseteq [A, L]$. Then L is solvable.

Finally we apply Theorem 3.2 to derivations of Leibniz algebra.

Corollary 3.4 Suppose that there exist an abelian subalgebra $D \leq \text{Der}(L)$ and an integer $n > 1$, such that

$$L^n \subseteq \sum_{d \in D} d(L).$$

Then L is solvable.

Proof. Let $\hat{L} = D \ltimes L$, the natural semidirect product. We assume that L is two-sided ideal. D is an abelian subalgebra in \hat{L}. Note that in the semidirect product,

$$[D, L] = \sum_{d \in D} d(L),$$

hence the assumption is just $L^n \subseteq [D, L]$. So L is solvable by Theorem 3.2.

References

Received: October, 2012