Semigroups of Quasi-Open Mappings
and Lattice-Equivalence

Firudin Kh. Muradov

Department of Computer Engineering
Near East University, Nicosia, TRNC
Mersin-10, Turkey
firudin@neu.edu.tr

Abstract

In this paper we consider the semigroups of quasi-open functions. A mapping \(f \) between topological spaces \(X \) and \(Y \) is quasi-open if for any non-empty open set \(U \subset X \), the interior of \(f(U) \) in \(Y \) is non-empty. We give an abstract characterization of semigroups of quasi-open mappings defined on a certain class of topological spaces.

Mathematics Subject Classification: 20M20, 54C10

Keywords: Quasi-open map; lattice-equivalence; \(T_D^+ \)-space

1 Introduction

In [5] Thron introduced a concept of lattice-equivalence of topological spaces. Let \(X \) be a topological space and let \(C(X) \) be the lattice of closed sets of \(X \). Two topological spaces \(X \) and \(Y \) are said to be lattice equivalent if there is a bijective map from \(C(X) \) onto \(C(Y) \) which together with its inverse is order preserving. Thron proved among others that for \(T_D \)-spaces \(X \) and \(Y \), any lattice-isomorphism \(\phi : C(Y) \rightarrow C(X) \) can be induced by a homomorphism \(f : X \rightarrow Y \). It is worth noting that several researchers dealt with the concept of lattice equivalent topological spaces and representations of an abstract lattice as the family of closed sets on a topological space [1], [6]. Several researchers focused their efforts on the characterization of topological spaces by semigroups of continuous, open, and closed mappings [4], [7]. A map \(f \) between topological spaces \(X \) and \(Y \) is quasi-open if for any non-empty open set \(U \subset X \), the interior of \(f(U) \) in \(Y \) is non-empty. The quasi-open maps have the properties similar to those of the continuous maps. But the quasi-open maps and the continuous maps are not related. Some characterizations of \(M_1 \)-spaces, in terms
of quasi-open maps given by Kao in [2]. If \(f \) and \(g \) are both quasi-open, then the function composition is also quasi-open. Let \(Q(X) \) denote the semigroup of quasi-open maps from a topological space \(X \) into itself with composition of functions as multiplication. The purpose of this paper is to investigate semigroups of quasi-open maps in light of lattice-equivalence. It is obvious that if \(X \) and \(Y \) are homeomorphic then the semigroups \(Q(X) \) and \(Q(Y) \) are isomorphic. If \(Q(X) \) and \(Q(Y) \) are isomorphic, must \(X \) and \(Y \) be homeomorphic? In general, the answer is no. Let \(X \) denote any set with more than two elements containing the elements \(\eta, \xi \). Consider the topological spaces \(Y = (X, \tau_1) \) and \(Z = (X, \tau_2) \) with \(\tau_1 = \{\emptyset, \{\eta\}, X\} \) and \(\tau_2 = \{\emptyset, \{\eta\}, X\setminus\{\xi\}, X\} \). Evidently \(Q(Y) \) and \(Q(Z) \) are isomorphic but \(Y \) and \(Z \) are not homeomorphic. In this paper, we give an abstract characterization of semigroups of quasi-open maps for a certain class of topological spaces.

2 An Abstract Characterization of Semigroups of Quasi-Open Maps

A topological space \(X \) is said to be a \(T_D \)-space if for every point \(\xi \) in \(X \) the set \(\{\xi\} \setminus \{\xi\} \) is closed [5]. We denote the set \(\{\xi\} \setminus \{\xi\} \) by \(\{\xi\}' \). Obviously, each \(T_D \)-space is \(T_0 \)-space and each \(T_1 \)-space is \(T_D \)-space. We call a topological space \(X \) a \(T_D^+ \)-space if it is a \(T_D \)-space with no one-point open sets and if for every point \(\xi \) in \(X \) and for every open set \(U \) containing \(\xi \) the set \(U \cap (X \setminus \{\xi\}) \) is not empty. Note that each \(T_1 \)-space without isolated points is \(T_D^+ \)-space.

Lemma 1 Let \(X \) be a \(T_D^+ \)-space and let \(\xi \in X \) and let \(a, b \) be arbitrary elements of \(Q(X) \). The condition

\[
\forall f, g \in Q(X), \ f a = g a \rightarrow f b = g b
\]

is necessary and sufficient for \(b(X) \subseteq a(X) \).

Proof. If the condition \(b(X) \subseteq a(X) \) is satisfied, then for every \(x \in X \) there exists a point \(\xi \in X \) such that \(b(x) = a(\xi) \). Then

\[
fb(x) = f(b(x)) = f(a(\xi)) = fa(\xi) = ga(\xi) = g(a(\xi)) = g(b(x)) = gb(x).
\]

So, condition (1) holds.

Now let condition (1) hold for some \(a, b \in Q(X) \). Suppose that the set \(b(X)\setminus a(X) \) is not empty. For any point \(\xi = b(x) \) in \(b(X)\setminus a(X) \) there exist \(f, g \in Q(x) \), such that \(f(\xi) \neq g(\xi) \) but \(f(x) = g(x) \) for all \(x \in X \setminus \{\xi\} \). Indeed, select a point \(\xi \in X \) and consider the map \(f : X \to X \) defined by

\[
f(x) = \begin{cases}
\eta_1 & \text{if } x = \xi \\
x & \text{if } x \neq \xi
\end{cases}
\]
and the map $g : X \to X$ defined by
\[
g(x) = \begin{cases}
\eta_2 & \text{if } x = \xi \\
x & \text{if } x \neq \xi
\end{cases}
\]
where $\eta_1 \neq \eta_2$ are any fixed points in $X \setminus \{\xi\}$. The maps f and g are quasi-open and we have $f(\xi) \neq g(\xi)$ but $f(x) = g(x)$ for all $x \in X \setminus \{\xi\}$. Then for every $x \in X$ the point $a(x)$ is in $X \setminus \{\xi\}$ and therefore $fa(x) = f(a(x)) = g(a(x)) = ga(x)$. But for $\xi = b(x) \in b(X)a(X)$ we have $fb(x) = f(b(x)) = f(\xi) \neq g(\xi) = g(b(x))$ which contradicts to (1).

Lemma 2 Let X and Y be T^+_σ-spaces and let $\varphi : Q(X) \to Q(Y)$ be an isomorphism between semigroups $Q(X)$ and $Q(Y)$. If $a(X) \subseteq b(X)$ for some $a, b \in Q(X)$ then $(\varphi a)(Y) \subseteq (\varphi b)(Y)$. Hence if $a(X) = b(X)$ for some $a, b \in Q(X)$ then $(\varphi a)(Y) = (\varphi b)(Y)$.

Proof. Suppose that $b(X) \subseteq a(X)$. If $f(\varphi a) = g(\varphi a)$ for some elements $f, g \in Q(Y)$ then there exist $f, g \in Q(X)$ such that $f \neq \varphi f$ and $g \neq \varphi g$. Then $(\varphi f)(\varphi a) = (\varphi g)(\varphi a)$ and since φ is an isomorphism, $\varphi(fa) = \varphi(ga)$ and $fa = ga$. We have $fb = gb$, by Lemma 1. Again, since φ is an isomorphism, then $(\varphi f)(\varphi b) = (\varphi g)(\varphi b)$ and therefore $f(\varphi b) = g(\varphi b)$. Because $f(\varphi b) = g(\varphi b)$ is true for every $f, g \in Q(Y)$ satisfying the condition $f(\varphi a) = g(\varphi a)$ it follows from Lemma 1 that $(\varphi b)(Y) \subseteq (\varphi a)(Y)$. In the same way, we could show that if $a(X) \subseteq b(X)$ then $(\varphi a)(Y) \subseteq (\varphi b)(Y)$.

Let X be a T^+_σ-space that has an open base, each element of which is an image of X under a quasi-open mapping and let Λ be a class of all such spaces. For instance, the open subsets of the α-cube I^α, $\alpha \geq 1$, the set \mathbb{R} of real numbers with Zariski topology and any topological space X, $|X| \geq \aleph_0$, with cofinite topology belong to the class Λ.

Lemma 3 Let $X \in \Lambda$ and let U be any open subset of X. Then there exists a quasi-open mapping $a \in Q(X)$ such that $a(X) = U$.

Proof. Let $X \in \Lambda$ and \mathcal{B} is an open base of X. Suppose that U is an open subset of X and $i : U \to X$ is the inclusion map, which is open map. Let $V_1 \in \mathcal{B}$ and $V_1 \subseteq U$, then there exists a quasi-open mapping f from X onto V_1. Consider the restriction of f to $X \setminus \overline{U}$. Since restriction of a quasi-open map to an open set is quasi-open, this map is quasi-open. Denote by g the extension of this mapping to $X \setminus \overline{U}$ obtained by assigning all boundary points of U to any fixed point in U. The mapping $a : X \to U$ defined by
\[
a(x) = \begin{cases}
i(x), & \text{if } x \in U \\
g(x), & \text{if } x \in X \setminus U
\end{cases}
\]
is a quasi-open map and \(a(X) = U \).

Let \(X \) be a topological space. The family \(O(X) \) of all open sets of \(X \) is a complete distributive lattice if set inclusion is taken as the ordering. By the duality principle for ordered sets, two topological spaces \(X \) and \(Y \) are homeomorphic if and only if lattices \(O(X) \) and \(O(Y) \) are isomorphic [5].

Theorem 4 Let \(X, Y \in \Lambda \). If the semigroups \(Q(X) \) and \(Q(Y) \) are isomorphic then the lattices \(O(X) \) and \(O(Y) \) are lattice-isomorphic.

Proof. Let \(U \) be any open subset of \(X \). By Lemma 3 there exists a quasi-open function \(a \in Q(X) \) such that \(a(X) = U \). Since the semigroups \(Q(X) \) and \(Q(Y) \) are isomorphic there exists a quasi-open function \(a' \in Q(Y) \) such that \(\varphi a = a' \). Let \(a'(Y) = U' \). We define a map \(\theta \) from \(O(X) \) to \(O(Y) \) by assigning to each open set \(U \subset X \) the set \(U' \subset Y \). The map \(\theta \) does not depend on the choice of \(a \in Q(X) \). Indeed, if \(a(X) = U \) and \(b(X) = V \) then Lemma 2 says that \((\varphi a)(Y) = (\varphi b)(Y) = U' \). Let \(U \) and \(V \) be any two different open subsets of \(X \). By Lemma 3 there exist two quasi-open functions \(a, b \in Q(X) \) such that \(a(X) = U \) and \(b(X) = V \). Since the semigroups \(Q(X) \) and \(Q(Y) \) are isomorphic it follows from Lemma 2 that \((\varphi a)Y \neq (\varphi b)Y \). Hence \(\theta \) is bijective. Now suppose that \(U' \) is an arbitrary open set in \(Y \). Since the semigroups \(Q(X) \) and \(Q(Y) \) are isomorphic it follows from Lemma 2 that there exists an open set \(U \subset X \) such that \(\theta(U) = U' \). Again it follows from Lemma 2 that if \(U \subseteq V \) then \(\theta(U) \subseteq \theta(V) \). From Theorem 2.1 of [5] it follows that the topological spaces \(X \) and \(Y \) are homeomorphic. ■

Theorem 5 Let \(X, Y \in \Lambda \). The semigroups \(Q(X) \) and \(Q(Y) \) are isomorphic if and only if the spaces \(X \) and \(Y \) are homeomorphic.

Proof. It is obvious that if \(X \) and \(Y \) are homeomorphic then \(Q(X) \) and \(Q(Y) \) are isomorphic. Specifically, if \(h \) is a homeomorphism from \(X \) onto \(Y \), then \(f \rightarrow h \circ f \circ h^{-1} \) is an isomorphism from \(Q(X) \) onto \(Q(Y) \). The proof of the necessary condition follows from Theorem 4. ■

References

Received: September, 2012