Generalization of Generalized Supplemented Module

Majid Mohammed Abed and Abd Ghafur Ahmad

School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
43600 UKM, Selangor Darul Ehsan, Malaysia
maj_nad2000@yahoo.com (Corresponding author)
ghafur@ukm.my

Abstract. In this paper we present the second generalization of generalized supplemented module. This generalization is done through two stages namely, the transition from supplemented into Rad-supplemented followed by transition from Rad-supplemented into weakly Rad-supplemented. If R be a Bass ring and M be a injective module then M is weakly Rad-supplemented module. Also we will generalize the \bigoplus-supplemented module into weak-\bigoplus-supplemented. We prove that every lifting module is a weak-\bigoplus-supplemented module. These stages depend on the conditions of the modules and rings.

Mathematics Subject Classification: 54C05, 54C08, 54C10

Keywords: Rad-supplemented, local module, hollow module, Bass ring, lifting module

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper all rings have the identity and modules are considered to be right modules. From [3], a submodule N of M is called small in M ($N \ll M$) if for every submodule of M, $N + L = M$ straight $L = M$. The dual of small is big (essential). This means any submodule N of M is big in M if the intersection of N with L is not equal to zero, where L is submodule of M. A submodule N of M is called a supplement of K in M if $N + K = M$ and N is minimal with respect to this property [15]. A module M is called supplemented if any submodule N of M has a supplement in M and M is called amply supplemented module if for any two submodules H and G with $H + G = M$, G contains a supplement of H in M [14]. Therefore if any module M has no maximal submodule this means $M = \text{Rad}(M)$ such that $\text{Rad}(M)$ is
intersection of all maximal submodules of M. A module M is called lifting if for all N submodule of M, there is a decomposition $M = H \oplus K$ such that H submodule of N and $N \cap H$ is small in M [13]. Any ring R is called a left Bass ring if, $\text{Rad}(M)$ is small in M such that $M \neq 0$ [7]. A module M is called semi-local if $(M/\text{Rad}(M))$ is semi-simple [15]. From [11] A module M is called hollow if every proper submodule N of M that (M/N) is hollow has a coessential submodule that is direct summand of M. A module M is called coatomic if every proper submodule of M is contained in a maximal submodule of M[12]. A module M is called local if M has largest submodule (i.e. a proper submodule which contains all other proper submodules [15]. A ring R is local if and only if (R_R) is local module. Let M be an R-module. Any submodules N, K of M we say that N is called a weak supplement of K in M if $N + K = M$ and $N \cap K$ small in M. A module M is called weakly supplemented if every submodule of M has a weak supplement in M. Let N and K are submodules of M then N is called weak Rad-supplement of K in M if, $N + K = M$ and $N \cap K \subseteq \text{Rad}(M)$. A module M is called weakly Rad-supplemented if every submodule of M has a weak Rad-supplemented in M [7]. In this work we are going to get a new conditions to generalize supplemented module into weakly Rad-supplemented and \bigoplus-supplemented into weak \bigoplus-supplemented module. Also, we used many type of modules to satisfying this objective as local, hollow, semi-local module.

2. Weakly Rad-supplemented module

Firstly, we begin the first stage in order to get a generalization for supplemented module. Every hollow module is Rad-supplemented and a module M is hollow if and only if it local module therefore any module M is local this means M is Rad-supplement.

Definition 2.1. Let M be an R-module and N, L are submodules of M. Then L is a radical supplement (Rad-supplement) of N in M if $N + L = M$ and $N \cap L \subseteq \text{Rad}(L)$.

Therefore, by this definition we can say that M is Rad-supplemented if every submodule in M has a Rad-supplement.

Lemma 2.2. Let R be a ring and let M be an injective module. Then M has no maximal submodule.

Lemma 2.3. Let R be a ring and M be an injective module. Then $\text{Rad}(M) = M$. [6].

Remark 2.4. If $\text{Rad}(M) = M$ then M is Rad-supplemented module.

Theorem 2.5. Let R be any ring and let M be an injective module with every N, L are submodules of M and $M = L + N$, $N \cap L \ll N$. Then M is a Rad-supplemented module.
Proof. We have L, N are submodules of M such that $M = L + N$ and $L \cap N \ll N$. Then N is supplement of L in M. If every submodule of M has supplement then M is supplemented. Now since M is injective module then by (Lemma 2.3) $M=\text{Rad}(M)$ and by (Remark 2.4) we get M is a Rad-supplemented module.

Remark 2.6. The transition from supplemented into Rad-supplemented it called generalization of supplemented module.

Definition 2.7. Let M be an R-module. Then M is called a projective cover of N if M is a projective and there exists an epimorphism f from M into N such that kernel of f is small in M.

Lemma 2.8. Let $N \to M$ be a projective cover, and let N be a hollow module. Then M is a hollow module [14].

Theorem 2.9. Let M be an R-module. If M is a hollow module, then M is Rad-supplemented module.

Proof. Since M is hollow module then every proper submodule of M is small in M. Therefore every submodule of M is supplement in M. Hence M is Rad-supplemented module.

Lemma 2.10. Let M be an R-module. If M is local module then M is a hollow module [16].

Remark 2.11. We recall that a supplemented module is Rad-supplemented.

In order to obtain a supplemented module for Rad-supplemented we need the following condition : (A ring R is called left Bass if $\text{Rad}(M)$ is small in M such that $M \neq 0$).

Theorem 2.12. Let R be a left Bass ring. Then every Rad-supplemented module is supplemented [7].

Theorem 2.13. Let R be a Bass ring and let M be an injective module. Then M is supplemented module.

Proof. Since M is an injective module then M has no maximal submodule. Therefore $\text{Rad}(M) = M$, and then M is Rad-supplemented module. Also, every Rad-supplemented module over Bass ring is supplemented module (Theorem 2.12).

The next stage is a generalization of Rad-supplemented module into weakly Rad-supplemented module in several ways:

Remark 2.14. Weakly supplemented module is weakly Rad-supplemented module

Now from [4] we have the following implication
There is a natural question to determine the conditions of module to transition by direct from supplemented to weakly \(R \)-ad-supplemented module. We conclude:

Theorem 2.15. Let \(M \) be a nonzero \(R \)-module. If \(M \) is local module then \(M \) is weakly \(R \)-ad-supplemented module.

Proof. Since \(M \) is local module then by (Lemma 2.10) \(M \) is hollow module and from (Theorem 2.9) \(M \) is \(R \)-ad-supplemented module. Therefore \(M \) is weakly \(R \)-ad-supplemented module. \(\square \)

Proposition 2.16. Let \(M \) be an \(R \)-module and \(M \) be a coatomic with radical equal zero. If \(M \) is supplemented module then \(M \) is weakly \(R \)-ad-supplemented module.

Proof. Since \(M \) is a supplemented module then every submodule \(N \) of \(M \) is supplement of \(K \) in \(M \) such that \(K \) submodule of \(M \). Let \((M/N) \) be hollow. Now we have \(\text{Rad}(M)=0 \), then \(M = K + N \), therefore \(M \) is hollow-lifting [see 13] and hence is hollow with \(\text{Rad}(M) \neq M \) this means \(M \) is hollow and finitely generated (cyclic). If \(M \) is hollow with cyclic then \(M \) is local, therefore \(M \) is weakly \(R \)-ad-supplemented module (Theorem 2.15). \(\square \)

Now we can return to (Theorem 2.13) to obtain weakly \(R \)-ad-supplemented module:

Theorem 2.17. Let \(R \) be a Bass ring and \(M \) be injective module. If every submodule \(N \) of \(M \) such that \(\text{Rad}(N) \subseteq \text{Rad}(M) \) then \(M \) is weakly \(R \)-ad-supplemented module.

Proof. By (Theorem 2.13) \(M \) is supplemented module. Then every supplemented module is \(R \)-ad-supplemented module this means \(L + N = M \) and \(N \cap L \subseteq \text{Rad}(N) \), but \(\text{Rad}(N) \subseteq \text{Rad}(M) \) then \(N \cap L \subseteq \text{Rad}(M) \) therefore \(N \) is weak \(R \)-ad-supplemented and hence \(M \) is weakly \(R \)-ad-supplemented module. \(\square \)
Lemma 2.18. Let M be an R-module. Then M is finitely generated supplemented module if and only if $M = L_1 + L_2 + ... + L_n$, for some local module L_n.

Proof. See [16].

Theorem 2.19. Let M be an R-module. If M is finitely generated and supplemented, then M is a weakly Rad-supplemented module.

Proof. Since R is semi-perfect then if every finitely generated R-module has a projective cover. From [15], every finitely generated left (respectively, right) R-module is supplemented and hence M is a weakly Rad-supplemented.

Definition 2.20. Let N submodule of M. Then N lies over a summand of M if there is a direct decomposition $M = R \oplus S$ with $R \subseteq N$, $S \cap N$ submodule of M.

Proposition 2.21. Let M be a nonzero module and let ψ be homomorphism from M into $(M/(\text{Rad}(M)))$, and every submodule of M lies over a summand of M. Then M is weakly Rad-supplemented module.

Proof. Let N be a small in $(M/(\text{Rad}(M)))$, then there is a K submodule of M such that $\psi(K) = N$. Since every submodule of M lies over a summand of M, then there exists submodules Q,R of M such that $M = Q \oplus R, Q \subseteq K$ and $K \cap R$ is small in M. Then $\psi(Q) = \psi(K) = N$ and $(M/(\text{Rad}(M)))\psi = (Q) \oplus \psi(R) = N \oplus \psi(R)$. N is direct summand of $(M/(\text{Rad}(M)))$. Then $(M/(\text{Rad}(M)))$ is semi-simple. If $(M/(\text{Rad}(M)))$ is semi-simple then M is semi-local and so R semi-simple which means R semi-perfect and by (Theorem 2.20) M is a weakly Rad-supplemented module.

Theorem 2.22. Let M be an R-module such that M not equal $\text{Rad}(M)$. Suppose that for every N submodule of M, there is a direct decomposition $M = A \oplus B$ with $A \subseteq N, B \cap N$ submodule of M and indecomposable. Then M is a weakly Rad-supplemented module.

Proof. Since M is indecomposable then M is local module [10] and by (Theorem 2.15) M is weakly Rad-supplemented module.

Theorem 2.23. Let N be submodule of a module M. If M is indecomposable and $\text{Rad}(M) \ll M$ and if M is N-semi-potent, then M is a weakly Rad-supplemented module.

Proof. By [1] M is local module and by (Theorem 2.15) M is weakly Rad-supplemented module.

Proposition 2.24. Let M be an R-module. If there exists a maximal submodule H of M such that H is small in M, then M is local and then weakly Rad-supplemented module.
Proof. Let \(K \) be a proper submodule of \(M \). Suppose that \(K \) not equal \(M \). Then \(H \subseteq H + K \subseteq M \). Therefore \(H = H + K \) or \(H + K = M \). Let \(H + K = M \), which means \(K = M \). This contradiction with \(H \) small in \(M \), therefore, \(H = H + K \), then \(K \subseteq H \) and hence \(H \) is largest proper submodule in \(M \) (\(M \) is local). Then \(M \) is weakly supplemented, and hence \(M \) is weakly Rad-supplemented module.

The most important results can be summarized in the following diagrams:

Diagram 2

Diagram 3

Diagram 4
3. **Weak-\bigoplus-Supplemented Module**

In this section we are studying some properties of \bigoplus-supplemented module and make a generalization of \bigoplus-supplemented into weak \bigoplus-supplemented by new conditions. If M lifting module then M is a \bigoplus-supplemented module. Also if R be a semi-simple ring and M be a \bigoplus-supplemented module then M is injective module. Let R be a ring then if every \bigoplus-supplemented R-module is injective this imply R is a left Noetherian V-ring and semi-simple [2].

Definition 3.1. Let M be an R-module. If any submodule of M has a supplement that is a direct summand of M and M is supplemented, then M is called a \bigoplus-supplemented module.

Definition 3.2. A module M is called amply supplemented if for any two submodules H and K with $H + K = M$, K contains a supplement of H in M.

Now we can rewrite above definition by other way in order to obtain \bigoplus-supplemented module. We explore many new properties for \bigoplus-supplemented module. If M is amply supplemented and any supplement submodule of M is a direct summand of M then M has lifting property. Therefore we can present the following lemmas:

Lemma 3.3. Let M be an R-module. If M is lifting module then M is a \bigoplus-supplemented module.

Lemma 3.4. Let N be submodule of M, then there exists a direct summand L of M such that L submodule of N and (N/L) submodule of $\text{Rad}((M)/(L))$. Then M is hollow and \bigoplus-supplemented module.

Definition 3.5. Let M be an R-module and N submodule of M. Then N lies above a direct summand of M if there exists H and G are submodules of N such that $H \bigoplus G = M$ and $N \cap G \ll G$.

Definition 3.6. Any module M is called (D_1)-module if every N submodule of M is lies above a direct summand of M.

Lemma 3.7. Let M be an R-module. Then M is (D_1)-module if and only if M is lifting module.

Theorem 3.8. Let M be an R-module. If M is (D_1)-module, then M is a \bigoplus-supplemented module.

Proof. Since M is (D_1)-module, then N is lies above a direct summand of M. Therefore there exists H, G are submodules of N, such that $H \bigoplus G = M$ and $N \cap G \ll G$. Then M is a lifting module and by (Lemma 3.3) M is a \bigoplus-supplemented module.

Corollary 3.9. Let M be an amply supplemented module such that every submodule of M lies above a direct summand of M. Then M is a \bigoplus-supplemented module.
Proof. Suppose M is an amply supplemented module. Then there are submodules L, K of M such that $L + K = M$ and K contains supplement of L. Since every submodule of M lies above a direct summand of M then M is (D_1)-module therefore M is a lifting module and hence by (Lemma 3.3) M is a \bigoplus-supplemented module.

Corollary 3.10. If M is a (D_1)-module, then $(M/\text{Rad}(M))$ is a \bigoplus-supplemented module.

Proof. Let M be a (D_1)-module. Then every submodule of M lies above a direct summand of M this means M is a lifting module. Then M is a \bigoplus-supplemented module and hence $(M/(\text{Rad}(M)))$ is a \bigoplus-supplemented.

Proposition 3.11. Let M be an R-module and let N submodule of M such that N supplement in M. Then M is a \bigoplus-supplemented module.

Proof. Firstly, we must prove that $\text{Rad}(M)=0$. Suppose $\text{Rad}(M)$ is not equal zero, there exists nonzero element r belong to $\text{Rad}(M)$. We have Rr supplement, then $Rr + H = M$ and $Rr \cap H \ll Rr$ such that H submodule of M. Since r belong to $\text{Rad}(M)$, then $Rr \ll M$ and $H = M$ and hence $Rr \ll Rr$ which is impossible. Then $\text{Rad}(M)=0$. Now we have N is a supplement, then $M = N + K$ and $N \cap K \ll K$ such that K submodule of M therefore $N \cap K \subseteq \text{Rad}(M) = 0$, then $N \cap K = 0$ and hence $M = N \bigoplus K$, then M is semi simple and hence is a \bigoplus-supplemented module.

Lemma 3.12. Let R be a semi-simple ring and M be a \bigoplus-supplemented module. Then M has no maximal submodule.

Definition 3.13. A ring R is called a left V-ring if every simple left R-module is injective.

Theorem 3.14. Let R be V-ring and M be an R-module. If M is the sum of its simple submodules, then M is a \bigoplus-supplemented module.

Proof. Since M is the sum of simple submodules then M is semi-simple. Now M is semi-simple and R is V-ring. Then M is a \bigoplus-supplemented module.

Proposition 3.15. Let M be an R-module. If N submodule of M is linearly compact and lies above a direct summand of M. Then M is a \bigoplus-supplemented module.

Proof. Since N is linearly compact then N has ample supplements in M. Therefore if K submodule of M and L submodule of N such that $N + K = M$, there is supplement L of N. Then by (Definition 3.2) M is amply supplemented module. Now M is amply supplemented and N is lies above a direct summand of M then by (Corollary 3.9) M is a \bigoplus-supplemented module.
Definition 3.16. Let M be an R-module. Then M is weak-\bigoplus-supplemented module if for each semi-simple submodule N of M there exists a direct summand K of M such that $M = N + K$ and $N \cap K$ is small in K.

Remark 3.17. Note that w-\bigoplus-supplemented module not imply \bigoplus-supplemented but the converse is true.

Example 3.18. Let R be a local Artinian ring with radical W such that $W^2 = 0$, $Q = R = W$ is commutative, $\dim(QW) = 2$ and $\dim(WQ) = 1$. Then the indecomposable injective right R-module $U = [(R \bigoplus R)/D]$ with $D = (ur; -v\ r): r \in R$ is a w-\bigoplus-supplemented module, but is not \bigoplus-supplemented [13].

Theorem 3.19. Let M be an R-module. If M is a lifting module then M is w-\bigoplus-supplemented module.

Proof. Since M is a lifting module then M is amply supplemented and any supplement submodule of M is direct summand of M. Therefore by (Corollary 3.9) M is a \bigoplus-supplemented module and by (Remark 3.17) M is a w-\bigoplus-supplemented module.

Corollary 3.20. If M is (D_1)-module then M is a w-\bigoplus-supplemented module.

Proof. Since M is (D_1)-module then M is lifting module and by above theorem M is a w-\bigoplus-supplemented module.

Corollary 3.21. Let N be submodule of M. If N lies above a direct summand of M then M is a w-\bigoplus-supplemented module.

Proof. By (Definition 3.6) and (Corollary 3.21).

Corollary 3.22. If M is Noetherian R-module and (D_1)-module then M is a w-\bigoplus-supplemented module.

Proof. Since M is Noetherian module then every submodule of M is finitely generated. Now M is (D_1)-module that is mean M is lifting module therefore M is finitely lifting. Then M is lifting module [18] and hence M is a w-\bigoplus-supplemented module (Theorem 3.19.)

Therefore we get the following implications:

\[N \text{ lies above a direct summand} \quad \Rightarrow \quad M \text{ (D_1)-module} \quad \Rightarrow \quad M \text{ lifting module} \]

\[M \text{ W-\bigoplus-supplemented} \quad \Rightarrow \quad M \text{ strongly \bigoplus-supplemented} \]

Diagram 5
4. Acknowledgement

The authors would like to acknowledge the financial support received from Universiti Kebangsaan Malaysia under the research grant UKM-ST-06-FRGS0146-2010. The authors also wish to gratefully acknowledge all those who have generously given of their time to referee our paper.

References

Received: September, 2012