On Weakly Commutative SCI-Rings and Generalized Commutative SCS-Rings

Sidy Demba Touré, Mamadou Sangharé and Ibrahima Labou

Département de Mathématiques et Informatique
Faculté des Sciences et Techniques
de l’Université Cheikh Anta Diop de Dakar, Sénégal
sidydtoure@yahoo.fr
mamsangare@hotmail.fr
labouyalmbin@hotmail.fr

Abstract

Let R be a ring. A left R-module M is said to be weakly Co-Hopfian (resp. generalized Hopfian) if every injective (resp. surjective) endomorphism of M is essential (resp. superfluous). The ring R is called weakly left SCI-ring (resp. generalized left SCS-ring) if every weakly left Co-Hopfian (resp. generalized left Hopfian) module is finitely cogenerated. In this note we will prove that the following conditions are equivalent: (i) R is an artinian commutative principal ideal ring; (ii) R is a weakly commutative SCI-ring; (iii) R is a generalized commutative SCS-ring.

Keywords: Co-Hopfian module, Hopfian module, weakly Co-Hopfian module, generalized Hopfian module, module finitely cogenerated, weakly SCI-ring, generalized SCS-ring

1 Introduction

Let R be a commutative ring with $1 \neq 0$. An R-module M is said to be Co-Hopfian (resp. Hopfian) if every injective (resp. surjective) endomorphism of M is an automorphism. M is said to be finitely cogenerated if its socle is
essential in \(M \) and finitely generated. The ring \(R \) is called commutative SCI-ring (resp. SCS-ring) if every Co-Hopfian (resp. Hopfian) module is finitely cogenerated. It have been proved in [5] that commutative artinian principal ideal rings characterize commutative SCI-rings and commutative SCS-rings. An \(R \)-module is said to be weakly Co-Hopfian (resp. generalized Hopfian) if every injective (resp. surjective) endomorphism of \(M \) is essential (resp. superfluous). The ring \(R \) is called a weakly commutative SCI-ring (resp. a generalized commutative SCS-ring) if every weakly Co-Hopfian (resp. generalized Hopfian) module is finitely cogenerated. The purpose of this note is to prove that commutative artinian principal ideal rings characterize weakly commutative SCI-rings and generalized commutative SCS-rings. In this note all rings are associative with \(1 \neq 0 \) and all modules are unitary. The reader may refer to [1] for all notion or notation not defined in this paper.

2 Characterization of weakly commutative SCI-Rings and generalized commutative SCS-rings

Proposition 2.1 (5). theorem 2.5

Let \(R \) be a commutative ring. Then the following conditions are equivalent

(i) \(R \) is an artinian principal ideal ring

(ii) \(R \) is a SCI-ring

(iii) \(R \) is a SCS-ring

Proposition 2.2 (1). proposition 10 - 18

For each ring the following statements are equivalent

(i) \(R \) is left artinian

(ii) Every finitely generated left \(R \)-module is finitely cogenerated.

Proposition 2.3. If \(M \) is a direct sum of an infinite countable family \((M_n)_{n \in \mathbb{N}}\) of submodules of \(M \) such that any two of them are isomorphic, then \(M \) is neither weakly co-Hopfian nor generalized hopfian.

Proof. For every integer (resp. nonzero integer) \(n \) let \(\varphi_n \) (resp. \(\xi_n \)) be an isomorphism of \(M_n \) onto \(M_{n+1} \) (resp. \(M_{n-1} \)), \(\xi_0 \) the zero endomorphism of \(M_0 \) and \(\varphi \) (resp. \(\xi \)) the endomorphism of \(M \) such that \(\varphi/M_n = \)
\varphi_n (\text{resp. } \xi/M_n = \xi_n). \text{ Then } \varphi \ (\text{resp. } \xi) \text{ is a monomorphism (resp. an epimorphism) of } M \text{ such that } \text{Im } f = \bigoplus_{n \geq 1} M_n \ (\text{resp. } \text{Ker } \xi = M_n) \text{ which is not essential (resp. superfluous) in } M. \tag*{\square}

Proposition 2.4. A direct summand of a generalized Hopfian (resp. weakly Co-Hopfian) module is a genralized Hopfian (resp. weakly Hopfian) module.

Proof. Let \(M \) be a module and \(N \) a direct summand of \(M \). We can write \(M = N \oplus K \) where \(K \) is a submodule of \(M \).

If \(M \) is a generalized Hopfian module and \(f \) a surjective endomorphism of \(N \), then

\[
\varphi : M = N \oplus K \rightarrow M = N \oplus K \quad n + k \rightarrow f(n) + k
\]

is a surjective endomorphism of \(M \). Therefore, \(\text{Ker } \varphi = \text{Ker } f \) is surperfluous in \(M \). If \(L \) is a submodule of \(N \) such that \(\text{Ker } f + L = N \), then \(M = \text{Ker } f + L + K \) and consequently \(M = L + K \). Thus, \(N = N \cap M = N \cap (L + K) = L + N \cap K = L + 0 = L \).

If \(M \) is a weakly co-hopfian module and \(g \) an injective endomorphism of \(N \), then

\[
\xi : M = N \oplus K \rightarrow M = N \oplus K \quad n + k \rightarrow g(n) + k
\]

is an injective endomorphism of \(M \). Then \(\text{Im } \xi \subseteq N \) i.e. \(\text{Im } g \oplus K \subseteq N \oplus K \) which implies that \(\text{Im } g \subseteq N \). (We can also see \cite{6} corollary 1.3 and \cite{7} corollary 1.3). \tag*{\square}

Proposition 2.5. If \(R \) is a weakly commutative SCI-ring (resp. generalized commutative SCS-ring) then \(R \) is a commutative SCI-ring (resp. commutative SCS-ring).

Proof. Let \(R \) be a weakly commutative SCS-ring (resp. generalized commutative SCS-ring) and \(M \) a Co-Hopfian module (resp. Hopfian module). Then \(M \) is weakly Co-Hopfian (resp. generalized Hopfian) and consequently \(M \) is finitely cogenerated. \tag*{\square}

Theorem 2.6. Let \(R \) be a commutative ring. Then the following conditions are equivalent
(i) R is an artinian principal ideal ring
(ii) R is a weakly SCI-ring
(iii) R is a generalized SCS-ring.

Proof. $(i) \Rightarrow (ii)$ and $(i) \Rightarrow (iii)$

Let R be a commutative artinian principal ideal ring. Following [2] every R-module is a direct sum of cyclic submodules. Let now M be a weakly Co-Hopfian (resp. generalized Hopfian) module which is not finitely cogenerated. Then by proposition 2.2 M is not finitely generated. We can write $M = \bigoplus_{i \in I} M_i$ where the M_i are cyclic submodule of M. Since there is only a finite number of non isomorphic cyclic R-modules, then there is an infinite countable family (M_n) of the family $(M_i)_{i \in I}$ such that any two of them are isomorphic. Therefore, we can write

$$M = K \oplus L \text{ where } L = \bigoplus_{n \in \mathbb{N}} M_n$$

Following proposition 2.4 L is weakly Co-Hopfian (resp. generalized Hopfian) and following proposition 2.3 L is not weakly Co-Hopfian (resp. generalized Hopfian). This is a contradiction.

$(ii) \Rightarrow (i)$ and $(iii) \Rightarrow (i)$

If R is a weakly commutative SCI-ring (resp. generalized commutative SCS-ring) then by proposition 2.5 R is a commutative SCI-ring (resp. commutative SCS-ring) and consequently, by proposition 2.1 R is an artinian commutative principal ideal ring.

Corollary 2.7. Let R a commutative ring. Then the following conditions are equivalent:

(1) R is an artinian principal ideal ring
(2) R is a weakly commutative SCS-ring
(3) R is a generalized commutative SCS-ring
(4) R is a commutative SCI-ring
(5) R is a commutative SCS-ring

Proof. Proposition 2.1 and theorem 2.6 prove the corollary.
References

Received: September, 2012