A Note on Semigroups of Linear Transformations with Invariant Subspaces

Pei Huisheng

Department of Mathematics
Xinyang Normal University
Xinyang Henan, 464000, P. R. China
peihuish@l26.com

Abstract

Let V be a vector space over a field and $T(V)$ the semigroup of all linear transformations from V into V. For a fixed subspace W of V, denote

$$S(V,W) = \{ \alpha \in T(V) : W\alpha \subseteq W \}.$$

Then $S(V,W)$ is a subsemigroup of $T(V)$. In this note, we show that the semigroup $S(V,W)$ is always abundant.

Keywords: semigroups; Green’s-starred relations; abundant semigroups; vector spaces; linear transformations

1 Introduction

Let V be a vector space over a field and $T(V)$ the semigroup (under composition) consisting of all linear transformations from V into V. Let W be a fixed subspace of V. In [4], R. P. Sullivan studied a kind of linear transformation semigroups involved with the subspace W,

$$T(V,W) = \{ \alpha \in T(V) : V\alpha \subseteq W \}.$$

She described Green’s relations and ideals for the semigroup $T(V,W)$. In [6] and [7], the authors consider another kind of subsemigroups of $T(V)$ involved with a fixed subspace W, that is,

$$S(V,W) = \{ \alpha \in T(V) : W\alpha \subseteq W \}.$$

In [6], Green’s relations and ideals on $S(V,W)$ are characterized. In [7], the regular elements in $S(V,W)$ are described and it is proved that $S(V,W)$ is regular if and only if $W = V$ or $W = \{0\}$.
Let S be a semigroup. We say that $a, b \in S$ are \mathcal{L}^*-related (\mathcal{R}^*-related) if they are \mathcal{L}-related (\mathcal{R}-related) in a semigroup T such that S is a subsemigroup of T. The relations \mathcal{L}^* and \mathcal{R}^* are equivalence relations on S. A semigroup S is called abundant if every \mathcal{L}^*-class and every \mathcal{R}^*-class of S contains an idempotent. It is well-known that regular semigroups are abundant. However, the converse is not true. For example, Umar showed in [5] that the semigroups $S^-(X)$ of order-decreasing transformations on a totally ordered finite set X is abundant but not regular. Also, letting $T(X)$ be the full transformation semigroup on a set X, in [3], the authors find out some equivalences E on X for which the semigroup

$$T_E(X) = \{\alpha \in T(X) : (x\alpha, y\alpha) \in E \text{ for all } (x, y) \in E\}$$

is abundant but not regular.

In this note, we first describe the relations \mathcal{L}^* and \mathcal{R}^* on $S(V, W)$. Then we show that the semigroups $S(V, W)$ is always abundant.

For convenience, we adopt the convention used in [4]. We write a subset $\{e_i : i \in I\}$ of V as $\{e_i\}$, letting the subscript denote an (unspecified) index set I. The subspace U of V generated by a linearly independent subset $\{e_i\}$ is denoted by $\langle e_i \rangle$ and we write $\dim U = |I|$. Often it is necessary to construct some $\alpha \in T(V)$ by first choosing a basis $\{e_i\}$ of V and some $\{u_i\} \subseteq V$, and then letting $e_i\alpha = u_i$ for each $i \in I$ and extending this action by linearity to the whole of V. To abbreviate matters, we simply say that given $\{e_i\}$ and $\{u_i\}$ within context, then $\alpha \in T(V)$ is defined by letting

$$\alpha = \begin{pmatrix} e_i \\ u_i \end{pmatrix}.$$

For undefined notation and concepts one can consult [1].

2 Main results

The following Lemma 1 and Lemma 2 come from [2], and Lemma 3 comes from [1, p.63, Exercise 19].

Lemma 1 Let S be a semigroup and $\alpha, \beta \in S$. Then the following statements are equivalent:

1. $(\alpha, \beta) \in \mathcal{R}^*$.
2. For all $\sigma, \gamma \in S^1$, $\sigma \alpha = \gamma \alpha$ if and only if $\sigma \beta = \gamma \beta$.

Lemma 2 Let S be a semigroup and $\alpha, \beta \in S$. Then the following statements are equivalent:

1. $(\alpha, \beta) \in \mathcal{L}^*$.
2. For all $\sigma, \gamma \in S^1$, $\alpha \sigma = \alpha \gamma$ if and only if $\beta \sigma = \beta \gamma$.

Let V be a vector space and $\alpha \in T(V)$. Denote $\ker\alpha = \{v \in V : v\alpha = 0\}$.

Lemma 3 Let $\alpha, \beta \in T(V)$. Then
(1) $(\alpha, \beta) \in \mathcal{L}$ if and only if $V\alpha = V\beta$;
(2) $(\alpha, \beta) \in \mathcal{R}$ if and only if $\ker\alpha = \ker\beta$.

First we need the next observation. Let $\alpha \in S(V,W)$ and \{zi\} be a basis for $V\alpha \cap W$. Extend this, respectively, to a basis \{zi, zj\} for W, to a basis \{zi, zi\} for $V\alpha$. Then we have

Lemma 4 \{zi, zj, zi\} is linearly independent.

Proof. Let $z_i = z'_i \alpha, \ z_l = z'_l \alpha$ for some $z'_i, z'_l \in V$. Assume

$$\sum k_i z_i + \sum k_j z_j + \sum k_l z_l = 0$$

for some scalars k_i, k_j, k_l. Then

$$\sum k_j z_j = -\sum k_i z_i - \sum k_l z_l = -\sum k_i z'_i \alpha - \sum k_l z'_l \alpha = (-\sum k_i z'_i - \sum k_l z'_l)\alpha$$

which implies that $\sum k_j z_j \in V\alpha \cap W$. Therefore, $\sum k_j z_j$ can be expressed by \{zi\}. Suppose $\sum k_j z_j = \sum h_i z_i$ for some scalars h_i. Then, since \{zi, zj\} is linearly independent, we have $k_j = 0$ for each j. Furthermore, $\sum k_i z_i + \sum k_l z_l = 0$. Notice that \{zi, zi\} is linearly independent, it must be the case that $k_i = 0$ for each i and $k_l = 0$ for each l. Consequently, \{zi, zj, zi\} is linearly independent. \hfill \square

Theorem 1 Let $\alpha, \beta \in S(V,W)$. Then $(\alpha, \beta) \in \mathcal{L}^*$ if and only if $V\alpha = V\beta$.

Proof. If $V\alpha = V\beta$, then $(\alpha, \beta) \in \mathcal{L}$ in the semigroup $T(V)$ by Lemma 3. Hence $(\alpha, \beta) \in \mathcal{L}^*$ in $S(V,W)$, and the sufficiency follows. Now suppose $(\alpha, \beta) \in \mathcal{L}^*$. If $V\alpha \neq V\beta$, without loss of generality, we may assume $V\alpha \backslash V\beta \neq \emptyset$. Take $z \in V\alpha \backslash V\beta$. There are two cases to consider: $z \in W$ or $z \notin W$.

Case 1. $z \in W$. Suppose \{zi\} is a basis for $V\beta \cap W$. Extend this to a basis \{zi, zj\} for W, to a basis \{zi, zl\} for $V\beta$, respectively. Then \{zi, zi, zi\} is linearly independent by Lemma 4. Extend it to a basis \{zi, zj, zl, zm\} for V. Define $\sigma, \gamma \in T(V)$ by letting

$$\sigma = \begin{pmatrix} z_i & z_j & z_l & zm & z \\ zi & z_j & z_l & zm & 0 \end{pmatrix}, \ \ \ \ \gamma = \begin{pmatrix} z_i & z_j & z_l & zm & z \\ zi & z_j & z_l & zm & z \end{pmatrix}.$$

Then $\sigma, \gamma \in S(V,W)$ and $\beta \sigma = \beta \gamma$ holds. However, for each $x \in z\alpha^{-1}$, $x\sigma = z\sigma = 0$ and $x\alpha \gamma = z\gamma = z$. So $\sigma \neq \alpha \gamma$ contradicting Lemma 1.

Case 2. $z \notin W$. Also, suppose \{zi\} is a basis for $V\beta \cap W$. Extend this to a basis \{zi, zj\} for W, to a basis \{zi, zi\} for $V\beta$, respectively. Then \{zi, zj, zi\} is
linearly independent by lemma 4. There are also two subcases: \(z \in \langle z_i, z_j, z_l \rangle \) or \(z \not\in \langle z_i, z_j, z_l \rangle \).

If the former is the case, extend \(\{z_i, z_j, z_l\} \) to a basis \(\{z_i, z_j, z_l, z_m\} \) for \(V \) and define \(\sigma, \gamma \in T(V) \) by letting

\[
\sigma = \begin{pmatrix} z_i & z_j & z_l & z_m \\ z_i & 0 & z_l & z_m \end{pmatrix}, \quad \gamma = \begin{pmatrix} z_i & z_j & z_l & z_m \\ z_i & z_j & z_l & z_m \end{pmatrix}.
\]

It is routine to verify that \(\sigma, \gamma \in S(V,W) \) and \(\beta \sigma = \beta \gamma \) holds. By hypothesis, \(z \in \langle z_i, z_j, z_l \rangle \), we can assume \(z = \sum k_i z_i + \sum k_j z_j + \sum k_l z_l \) for some scalars \(k_i, k_j, k_l \) with \(k_{j_0} \neq 0 \) for some \(j_0 \) (If \(k_j = 0 \) for all \(j \) then \(z = \sum k_i z_i + \sum k_l z_l \in V \beta \), contradicting the hypothesis). For each \(x \in z \alpha^{-1} \),

\[
x \alpha \sigma = z \sigma = \sum k_i z_i + \sum k_l z_l \neq z = z \gamma = x \alpha \gamma.
\]

Thus, \(\alpha \sigma \neq \alpha \gamma \), a contradiction.

If the latter is the case, that is, \(z \not\in \langle z_i, z_j, z_l \rangle \). Extend \(\{z_i, z_j, z_l\} \) to a basis \(\{z_i, z_j, z_l, z_m, z\} \) for \(V \) and define \(\sigma, \gamma \in S(V,W) \) as the same as in Case 1. Then we also have \(\beta \sigma = \beta \gamma \) and \(\alpha \sigma \neq \alpha \gamma \), a contradiction. Consequently, it follows that \(V \alpha = V \beta \) and the necessity holds. \(\square \)

Theorem 2 Let \(\alpha, \beta \in S(V,W) \). Then \((\alpha, \beta) \in R^* \) if and only if \(\ker \alpha = \ker \beta \).

Proof. The sufficiency follows immediately from Lemma 3, since \(\ker \alpha = \ker \beta \) implies \((\alpha, \beta) \in R \) in \(T(V) \). Now suppose \((\alpha, \beta) \in R^* \) in \(S(V,W) \). If \(\ker \alpha \neq \ker \beta \) then, without loss of generality, we may assume there exists some \(z \in \ker \alpha \setminus \ker \beta \). Suppose \(\{u_l\} \) is a basis for \(W \alpha \). Extend this to a basis \(\{u_l, u_m\} \) for \(V \alpha \cap W \), and further extend to a basis \(\{u_l, u_m, u_n\} \) for \(V \alpha \). Choose \(z_l \in u_l \alpha^{-1} \cap W \) for each \(l \), \(z_m \in u_m \alpha^{-1} \) for each \(m \) and \(z_n \in u_n \alpha^{-1} \) for each \(n \).

There are two possibilities: \(z \in W \) or \(z \not\in W \).

Case 1. \(z \in W \). Take a basis \(\{z, z_i\} \) for \(\ker \alpha \cap W \) and extend this to a basis \(\{z, z_i, z_j\} \) for \(\ker \alpha \). Then \(\{z, z_i, z_l\} \) is a basis for \(W \) while \(\{z, z_i, z_j, z_l, z_m, z_n\} \) is a basis for \(V \). Define \(\sigma, \gamma \in T(V) \) by letting

\[
\sigma = \begin{pmatrix} z & z_i & z_j & z_l & z_m & z_n \\ 0 & z_i & z_j & z_l & z_m & z_n \end{pmatrix}, \quad \gamma = \begin{pmatrix} z & z_i & z_j & z_l & z_m & z_n \\ z & z_i & z_j & z_l & z_m & z_n \end{pmatrix}.
\]

One routinely verifies that \(\sigma, \gamma \in S(V,W) \), \(\sigma \alpha = \gamma \alpha \) and \(z \sigma \beta = 0 \neq z \beta = z \gamma \). Thus \(\sigma \beta = \gamma \beta \), a contradiction.

Case 2. \(z \not\in W \). Take a basis \(\{z_i\} \) for \(\ker \alpha \cap W \) and extend this to a basis \(\{z_i, z_j\} \) for \(\ker \alpha \). Then \(\{z_i, z_l\} \) is a basis for \(W \) while \(\{z, z_i, z_j, z_l, z_m, z_n\} \) is a basis for \(V \). Define \(\sigma, \gamma \in S(V,W) \) as the same as in Case 1. Then we also have \(\sigma \alpha = \gamma \alpha \) and \(\sigma \beta = \gamma \beta \), a contradiction. Consequently, we have \(\ker \alpha = \ker \beta \) and the proof is complete. \(\square \)
Theorem 3 For each $\alpha \in S(V,W)$, there exists an idempotent $\beta \in S(V,W)$ such that $V\alpha = V\beta$. Consequently, each L^* class contains an idempotent.

Proof. Suppose $\{z_i\}$ is a basis for $V\alpha \cap W$, $\{z_i, z_j\}$ is a basis for W and $\{z_i, z_l\}$ is a basis for $V\alpha$. Then $\{z_i, z_j, z_l\}$ is linearly independent by Lemma 4. Extend this to a basis $\{z_i, z_j, z_l, z_m\}$ for V, and define $\beta \in T(V)$ by letting

$$\beta = \begin{pmatrix} z_i & z_j & z_l & z_m \\ z_i & 0 & z_l & 0 \end{pmatrix}.$$

Obviously, β is an idempotent in $S(V,W)$ and $V\beta = \langle z_i, z_l \rangle = V\alpha$. The remaining conclusion follows from Theorem 1. \Box

Theorem 4 For each $\alpha \in S(V,W)$, there exists an idempotent $\beta \in S(V,W)$ such that $\ker \alpha = \ker \beta$. Consequently, each R^* class contains an idempotent.

Proof. Suppose $\{z_i\}$ is a basis for $\ker \alpha \cap W$, $\{z_i, z_j\}$ is a basis for $\ker \alpha$. Let $\{u_l\}$ be a basis for $W\alpha$ and $\{u_l, u_m\}$ a basis for $V\alpha$. Take $z_l \in u_l \alpha^{-1} \cap W$ for each l, $z_m \in u_m \alpha^{-1}$ for each m. Then $\{z_i, z_l\}$ is a basis for W and $\{z_l, z_j, z_l, z_m\}$ is a basis for V. Define $\beta \in T(V)$ by letting

$$\beta = \begin{pmatrix} z_i & z_j & z_l & z_m \\ 0 & 0 & z_l & z_m \end{pmatrix}.$$

Then β is an idempotent in $S(V,W)$. Moreover, $\ker \beta = \langle z_i, z_j \rangle = \ker \alpha$. The remaining conclusion follows from Theorem 2. \Box

The following conclusion readily follows from Theorems 3 and 4.

Corollary The semigroup $S(V,W)$ is always abundant.

Consequently, if W is a non-trivial subspace of V (namely, W is neither $\{0\}$ nor V), then $S(V,W)$ is abundant but not regular.

References

Received: August, 2012