On the Variation of Generalized Matrix Function

LIU Hua-lu and LIU Xiu-sheng

School of Mathematics and Physics
Hubei Polytechnic University
435003 Huangshi, China
hwlulu@yahoo.com.cn

Abstract. Let V be an m-dimensional Hilbert space. Suppose H is a subgroup of the symmetric group of order m, and $\chi : H \to \mathbb{C}$ is a character of degree 1 on H. For $A \in M_m$, we define the generalized matrix function $d_\chi(A)$ by

$$d_\chi(A) = \sum_{\sigma \in H} \chi(\sigma) \prod_{i=1}^m a_{\sigma(i)}.$$

In this paper, we prove that for any $A, B \in M_n$ the inequalities

$$\|d_\chi(A) \pm d_\chi(B)\|_p \leq \left[\|A\|_p^p + \|B\|_p^p\right]^{\frac{1}{p}}$$

and

$$\|d_\chi(A) \pm d_\chi(B)\|_p \leq \left[\|d_\chi(A')A + d_\chi(B')B\|_p + \|2 \text{Re} d_\chi(A'B)\|_p\right]^{\frac{1}{p}}$$

hold, where $\|\cdot\|_p$ is the L_p-operator norm ($0 < p \leq 2$).

Mathematics Subject Classification: 15A69, 15A60, 15A42

Keywords: symmetry class of tensors; general matrix function; operator norm

1. Background and Notations

Let V be an m-dimensional Hilbert space. Suppose H is a subgroup of the symmetric group of order m, and $\chi : H \to \mathbb{C}$ is a character of degree 1 on $H.$
Consider the symmetrizer on the tensor space $\otimes^m V$

$$S(V_1 \otimes \ldots \otimes V_m)$$

$$= \frac{1}{h} \sum_{\sigma \in H} \chi(\sigma)V_{\sigma^{-1}(1)} \otimes \ldots \otimes V_{\sigma^{-1}(m)}$$

defined by H and χ, where h is the order of the subgroup H.

Obvious $S^2 = S, S^* = S$. The vector space $V^m_\chi(H) = S(\otimes^m V)$ is a subspace of $\otimes^m V$, called the symmetry class of tensors over V associated with H and χ. The elements in $V^m_\chi(H)$ of the form $S(V_1 \otimes \ldots \otimes V_m)$ are called decomposable tensors and denoted by $V_1 \ast \ldots \ast V_m$.

Let M_m be the set of $m \times m$ complex matrices. Define the generalized matrix function

$$d_{\chi} : M_m \rightarrow C$$

associated with χ by

$$d_{\chi}(A) = \sum_{\sigma \in H} \chi(\sigma) \prod_{i=1}^{m} a_{\sigma(i)}$$

$A = (a_{ij}) \in M_m$.

This general matrix function includes the permanent($H=S_m, (\chi(\sigma))=1$), the determinat ($H=S_m, \chi(\sigma)=\text{sign}\sigma$), and other assorted interesting functions.

Influenced by the general recent interest in general matrix function, the question of the Variation of general matrix function has been studied ([1]). In the paper, we show that the main results is:

Theorem 1 Let $A, B \in M_m$, then
On the variation of generalized matrix function

\[|d_x(A) \pm d_x(B)| \leq \left[\|A\|_p^p + \|B\|_p^p \right]^{\frac{1}{2}}. \]

For \(\| \cdot \| = \| \cdot \|_p \), the \(l_p \)—operator norm (\(0 < p \leq 2 \)).

Theorem 2 Let \(A, B \in M_m \),

\[|d_x(A) \pm d_x(B)| \leq \left[d_x(A^*A) + d_x(B^*B) + 2 \Re d_x(A^*B) \right]^{\frac{1}{2}}. \]

Here \(0 < p \leq 2 \) we define as usual the \(l_p \)—norm

\[\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}}, \]

and the associated operator norm

\[\|A\|_p = \max \{ \|Ax\|_p : \|x\|_p \leq 1 \}. \]

For any rectangular matrices \(A, B \) we denote \(A \otimes B \) the usual tensor product.

2. Proof of the Theorem

The prove the theorem, we start with four preparatory lemma.

Lemma 1\(^{[2]}\) For \(A_i \in M_m \),

\[i=1,2, \ldots, m, \]

\[\|A_1 \otimes \cdots \otimes A_m\|_p = \prod_{i=1}^{m} \|A_i\|_p. \] \hspace{1cm} (2.1)

Lemma 2\(^{[3]}\) If \(\chi \) is any character of a finite group \(G \), then \(|\chi(\sigma)| > \chi(e) \) for each \(\sigma \in G \).

Lemma 3 If \(A_1, A_2 \in M_m, \) \(x_1, x_2 \in V \) and \(\|x_1\| = \|x_2\| = 1 \), then

\[\|A_1 x_1 * A_2 x_2\|_p \leq \|A_1 x_1\|_p \|A_2 x_2\|_p \leq \|A_1\|_p \|A_2\|_p. \] \hspace{1cm} (0 < p \leq 2) \hspace{1cm} (2.2)

Proof By definition
\[A_{i_1} * A_{i_2} = \frac{1}{|H|} \sum_{\sigma \in H} \chi(\sigma) A_{\sigma^{-1}(i)} \otimes A_{\sigma^{-1}(2)} \] which \(H \) is either \{(1)\} or \(H = \{(1), (2)\} \).

If \(H = \{(1)\} \), then
\[
\left\| A_{i_1} \otimes A_{i_2} \right\|_p = \left\| (A_{i_1}) \otimes (A_{i_2}) \right\|_p = \left\| A_{i_1} \right\|_p \left\| A_{i_2} \right\|_p \leq \left\| A_{i_1} \right\|_p \left\| A_{i_2} \right\|_p
\]

(2.3)

If \(H = \{(1), (2)\} \), then
\[
\left\| A_{i_1} \otimes A_{i_2} \right\|_p = \frac{1}{2} \left\| \sum_{\sigma \in H} \chi(\sigma) A_{\sigma^{-1}(i)} \otimes A_{\sigma^{-1}(2)} \right\|_p
\]
\[
\leq \frac{1}{2} \sum_{\sigma \in H} \chi(\sigma) \left\| A_{\sigma^{-1}(i)} \otimes A_{\sigma^{-1}(2)} \right\|_p
\]
\[
\leq \frac{1}{2} \sum_{\sigma \in H} \chi(\sigma) \left\| A_{\sigma^{-1}(i)} \right\|_p \left\| A_{\sigma^{-1}(2)} \right\|_p = \left\| A_{i_1} \right\|_p \left\| A_{i_2} \right\|_p \leq \left\| A_{i_1} \right\|_p \left\| A_{i_2} \right\|_p
\]

(2.4)

and by (2.3) and (2.4) we have (2.2).

An obvious consequence is

Lemma 4 For \(A_i \in M_m, x_i \in V \)

\[\|x_i\| = 1 \quad (i = 1, 2, \ldots, s) \]
\[\left\| A_{i_1} \otimes \cdots \otimes A_{i_s} \right\|_p \leq \prod_{i=1}^s \left\| A_{i_i} \right\|_p \leq \prod_{i=1}^s \left\| A \right\|_p \]

\[(0 < p \leq 2) \]

Lemma 5 Let \(A, B \in M_m \), and let \(e_i \) denote the m-tuple with 1 in position, zero else where. Then

\[(Be_1 * Be_2 * \ldots * Be_m, Ae_1 * \ldots * Ae_m) \]
\[= d_A (B^* A). \]

(2.5)

In particular

\[\left\| Ae_1 * \cdots * Ae_m \right\|_p^2 = d_A (A^* A), \]

(2.6)

and

\[(e_1 * e_2 * \ldots, e_m, Ae_1 * \ldots * Ae_m) \]
On the variation of generalized matrix function

\[d_\chi(A) = \chi(A). \] \hspace{1cm} (2.7)

Proof In fact

\[a_{ij} = (A)_{ij} = (Ae_i, e_j) \quad (i, j = 1, 2, \ldots, m). \]

By \(S^2 = S, \quad S^* = S, \) we obtain

\[
(Be_1 \ast Be_2 \ast \ldots \ast Be_m, Ae_1 \ast \ldots \ast Ae_m)
\]

\[= (Be_1 \otimes \ldots \otimes Be_m, \sum_{\sigma \in \Pi} \chi(\sigma) \quad Ae_{\sigma^{-1}(1)} \]

\[\otimes \ldots \otimes Ae_{\sigma^{-1}(m)}) \]

\[= \sum_{\sigma \in \Pi} \chi(\sigma) (Be_1 \otimes \ldots \otimes B e_m, Ae_{\sigma^{-1}(1)} \]

\[\otimes \ldots \otimes Ae_{\sigma^{-1}(m)}) \]

\[= \sum_{\sigma \in \Pi} \chi(\sigma^{-1}) \prod_{i=1}^m (Be_i, Ae_{\sigma^{-1}(i)}) \]

\[= \sum_{\sigma \in \Pi} \chi(\sigma) \prod_{i=1}^m (Be_i, Ae_{\sigma(i)}) \]

\[= \sum_{\sigma \in \Pi} \chi(\sigma) \prod_{i=1}^m (A^*Be_i, e_{\sigma(i)}) \]

\[= \sum_{\sigma \in \Pi} \chi(\sigma) \prod_{i=1}^m (A^*B)_{\sigma(i)} \]

\[= d_\chi(B^*A). \]

Take \(B = A \) or \(B = I \), this implies

\[\|Ae_1 \ast \ldots \ast Ae_m\|_2^2 = d_\chi(A^*A). \]

and

\[
(e_1 \ast e_2 \ast \ldots, e_m, Ae_1 \ast \ldots \ast Ae_m)
\]

\[= d_\chi(A). \]
Proof of the Theorem 1. From (2.7) and the Schwarz inequality we have
\[
\left| d_x (A) \pm d_x (B) \right|
\]
\[
= \left| \left(e_1 \ast \cdots \ast e_m, Ae_1 \ast \cdots \ast Ae_m \right) \right|
\]
\[
= \left| \left(e_1 \ast \cdots \ast e_m, Be_1 \ast \cdots \ast Be_m \right) \right|
\]
\[
\leq \left\| A e_1 \ast \cdots \ast Ae_m \pm Be_1 \ast \cdots \ast Be_m \right\|
\]
\[
\leq \left\| A \right\|_p \left\| e_1 \ast \cdots \ast e_m \right\|_p \sum_{i=1}^{m} \left(A e_i \ast \cdots \ast Ae_m \right)
\]
\[
\leq \left[\left\| A \right\|_p \right]^2 \left\| e_1 \ast \cdots \ast e_m \right\|_p \sum_{i=1}^{m} \left(A e_i \ast \cdots \ast Ae_m \right)
\]
\[
\leq \left[\left\| A \right\|_p + \left\| B \right\|_p \right]^2.
\]
Further, we recall that \(\left\| A \right\|_p \) is a monotone decreasing function of \(p \),
\[
0 \leq p \leq \infty.
\]
Hence
\[
\left\| A \right\|_p \geq \left\| A \right\|_2, \left\| B \right\|_p \geq \left\| B \right\|_2, \text{ for all}
\]
\[
0 \leq p \leq 2.
\]
Hence
\[
\left| d_x (A) \pm d_x (B) \right| \leq \left[\left\| A \right\|_p + \left\| B \right\|_p \right]^2
\]
holds for all \(0 \leq p \leq 2 \).

Proof of the Theorem 2. By (2.5), (2.6), (2.7), we have
\[
\left| d_x (A) \pm d_x (B) \right|
\]
On the variation of generalized matrix function

\[\pm \left(e_1 \ast \ldots \ast e_m, Ae_1 \ast \ldots \ast Ae_m \right) \]

\[\pm \left(e_1 \ast e_2 \ast \ldots \ast e_m, Be_1 \ast \ldots \ast Be_m \right) \]

\[\pm \left(e_1 \ast \ldots \ast e_m, Ae_1 \ast \ldots \ast Ae_m \pm Be_1 \ast \ldots \ast Be_m \right) \]

\[\leq \left\| A e_1 \ast \ldots \ast Ae_m \pm Be_1 \ast \ldots \ast Be_m \right\| \]

\[\leq \| A e_1 \ast \ldots \ast Ae_m \pm Be_1 \ast \ldots \ast Be_m \| \frac{1}{2} \| e_1 \ast \ldots \ast e_m \| \frac{1}{2} \]

\[= (Ae_1 \ast \ldots \ast Ae_m \pm Be_1 \ast \ldots \ast Be_m) \frac{1}{2} \]

\[= \left[\| Ae_1 \ast \ldots \ast Ae_m \| \frac{1}{2} + \| Be_1 \ast \ldots \ast Be_m \| \frac{1}{2} \right] \]

\[\pm (Be_1 \ast \ldots \ast Be_m, Ae_1 \ast \ldots \ast Ae_m) \]

\[\pm (Ae_1 \ast \ldots \ast Ae_m, Be_1 \ast \ldots \ast Be_m) \| \frac{1}{2} \]

\[= \left[d_x(A^*A) + d_x(B^*B) \pm d_x(A^*B) \pm d_x(B^*A) \right] \frac{1}{2} \]

\[\leq \left[d_x(A^*A) + d_x(B^*B) \pm 2 Re d_x(A^*B) \right] \frac{1}{2} \]

References

Received: April, 2012