Characterization of Left Quasi-regular and Semisimple Ordered Semigroups in Terms of Fuzzy Sets

Niovi Kehayopulu
University of Athens
Department of Mathematics
15784 Panepistimiopolis
Athens, Greece
nkehayop@math.uoa.gr

Abstract
We characterize the left (right) quasi-regular and the semisimple ordered semigroups in terms of fuzzy sets.

Mathematics Subject Classification: 06F05 (08A72)

Keywords: Ordered semigroup, left (right) ideal, ideal, fuzzy subset, fuzzy left (right) ideal, fuzzy ideal, idempotent, regular, intra-regular, left (right) quasi-regular, semisimple

1 Introduction
We have seen in [3] that an ordered semigroup S is regular if and only if, for every fuzzy subset f of S, we have $f \preceq f \circ 1 \circ f$. It is intra-regular if and only if, for every fuzzy subset f of S, we have $f \preceq 1 \circ f^2 \circ 1$ (where $f^2 := f \circ f$). As these characterizations play an essential role in studying the structure of ordered semigroups, it is natural to ask for an analogous characterization in case of left (or right) quasi-regular and semisimple ordered semigroups. Recall that the left (resp. right) quasi-regular ordered semigroups are semisimple. In the present paper we first characterize the ordered semigroups which are left (or right) quasi-regular in terms of their fuzzy subsets and then we characterize the more general class of semiprime ordered semigroups in terms of fuzzy sets. We prove that an ordered semigroup S is left (resp. right) quasi-regular if and only if, for every fuzzy subset f of S, we have $f \preceq 1 \circ f \circ 1 \circ f$ (resp. $f \preceq f \circ 1 \circ f \circ 1$). It is semisimple if and only if, for every fuzzy subset f of S, we have $f \preceq 1 \circ f \circ 1 \circ f \circ 1$. Left quasi-regular semigroups (without order) using fuzzy sets have been first considered by N. Kuroki in [5].
Following L. Zadeh who introduced the fuzzy sets, if S is an ordered groupoid, a fuzzy subset of S (or a fuzzy set in S) is a mapping f of S into the real closed interval $[0,1]$ of real numbers. For each subset A of S, the characteristic function f_A is the fuzzy subset of S defined as follows:

$$f_A : S \to [0,1] \mid a \to f_A(x) := \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$

For $a \in S$, we define $A_a = \{(x,y) \in S \times S \mid a \leq xy\}$, for two fuzzy subsets f, g of S, we define

$$(f \circ g)(a) := \begin{cases} \bigvee_{(y,z) \in A_a} \min\{f(y), g(z)\} & \text{if } A_a \neq \emptyset \\ 0 & \text{if } A_a = \emptyset \end{cases}$$

$a \in S)$, and in the set of all fuzzy subsets of S we define the order relation as follows:

$f \leq g$ if and only if $f(x) \leq g(x)$ for all $x \in S$.

If f, g are fuzzy subsets of S and $f \leq g$ then, for every fuzzy subset h of S, we have $f \circ h \leq g \circ h$ and $h \circ f \leq h \circ g$. Denote by 1 the fuzzy subset of S defined by:

$$1 : S \to [0,1] \mid x \to 1(x) := 1.$$

This is the greatest element of the set of fuzzy subsets of S. In addition, if S is an ordered semigroup, then the multiplication " \circ " on fuzzy subsets of S is associative. A fuzzy subset f of an ordered semigroup S is called a fuzzy left ideal of S, if (1) $f(xy) \geq f(y)$ for all $x, y \in S$ and (2) if $x \leq y$, then $f(x) \geq f(y)$. Equivalently, if (1) $1 \circ f \leq f$ for every fuzzy subset f of S and (2) if $x \leq y$, then $f(x) \geq f(y)$. It is called a fuzzy right ideal of S, if (1) $f(xy) \geq f(x)$ for all $x, y \in S$ and (2) if $x \leq y$, then $f(x) \geq f(y)$. Equivalently, if (1) $f \circ 1 \leq f$ for every fuzzy subset f of S and (2) if $x \leq y$, then $f(x) \geq f(y)$ [4]. It is called a fuzzy ideal of S if it is both a fuzzy left and a fuzzy right ideal of S. Let (S, \leq) be an ordered semigroup. For a subsemigroup T of S and a subset H of T we denote by $(H)_T$ the subset of T defined by

$$(H)_T := \{t \in T \mid t \leq h \text{ for some } h \in H\}.$$

For $T = S$, we write (H) instead of $(H)_S$.

A nonempty subset A of S is called a left (resp. right) ideal of S if (1) $SA \subseteq A$ (resp. $AS \subseteq A$) and (2) if $a \in A$ and $S \ni b \leq a$, then $b \in A$, that is, $A = A$. If A is both a left and right ideal of S, then it is called an ideal of S. We denote by $L(A), R(A), I(A)$ the left ideal, right ideal, and the ideal of S, respectively, generated by $A (A \subseteq S)$. We have $L(A) = (A \cup SA),$.

Left quasi-regular ordered semigroups

Definition 2.1 An ordered semigroup S is called left quasi-regular if for every $a \in S$ there exist $x, y \in S$ such that $a \leq xaya$.

Equivalent Definitions:

1. $a \in (SaSa]$ for every $a \in S$.
2. $A \subseteq (SASA]$ for every $A \subseteq S$.

A subset A of S is called idempotent if $A = (A^2]$. A fuzzy subset f of S is called idempotent if $f^2 := f \circ f = f$.

Theorem 2.1 An ordered semigroup (S, \leq) is left quasi-regular if and only if, for every fuzzy subset f of S, we have

$$f \leq 1 \circ f \circ 1 \circ f.$$

For its proof we use the Propositions 2.1 and 2.2 below.

Lemma 2.1 [2] Let (S, \leq) be an ordered groupoid. If A is a left (resp. right) ideal of (S, \leq), then the characteristic function f_A is a fuzzy left (resp. fuzzy right) ideal of (S, \leq). "Conversely", if A is a nonempty set and f_A a fuzzy left (resp. right) ideal of (S, \leq), then A is a left (resp. right) ideal of (S, \leq).

Lemma 2.2 [3; Proposition 5] If S is an ordered groupoid, f, g fuzzy subsets of S and $a \in S$, then the following are equivalent:

1. $(f \circ g)(a) \neq 0$.
2. There exists $(x, y) \in A_a$ such that $f(x) \neq 0$ and $g(y) \neq 0$.

Proposition 2.1 An ordered semigroup S is left quasi-regular if and only if the left ideals of S are idempotent.

For this proposition we refer to [6], with the observation that if I is an ideal of S and $a \in I$, then $(IaIa)_I = (IaIa]$ (cf. the proof of Theorem 2.1 in [6]). An independent proof which shows its pointless character, essential for further investigation on the subject, is the following:
\[
(\therefore) \text{Let } A \text{ be a left ideal of } S. \text{ Then we have }
\]
\[
A \subseteq (SASA) \subseteq (A^2) \subseteq (SA) \subseteq (A) = A,
\]
so \((A^2) = A\).

\[
\leftarrow. \text{Let } A \subseteq S. \text{ By hypothesis, we have }
\]
\[
A \subseteq L(A) = (L(A)L(A)) = ((A \cup SA)(A \cup SA))
\]
\[
= ((A \cup SA)(A \cup SA))
\]
\[
= (A^2 \cup SA^2 \cup ASA \cup SASA).
\]
Then
\[
A^2 \subseteq (A^2 \cup SA^2 \cup ASA \cup SASA)(A)
\]
\[
\subseteq (A^3 \cup SA^3 \cup ASA^2 \cup SASA^2)
\]
\[
\subseteq (ASA \cup SASA),
\]
\[
SA^2 \subseteq (S)(ASA \cup SASA) \subseteq (SASA \cup SASA)
\]
\[
= (SASA \cup S^2 ASA) = (SASA),
\]
\[
A \subseteq ((ASA \cup SASA) \cup (SASA) \cup ASA \cup SASA)
\]
\[
= ((ASA \cup SASA)] = (ASA \cup SASA),
\]
\[
ASA \subseteq (ASA \cup SASA)[SA] \subseteq (ASASA \cup SASASA) \subseteq (SASA),
\]
\[
A \subseteq ((SASA) \cup SASA) = ((SASA)] = (SASA),
\]
and \(S\) is left quasi-regular. \(\square\)

Proposition 2.2 If \(S\) is an ordered semigroup, then the left ideals of \(S\) are idempotent if and only if the fuzzy left ideals of \(S\) are idempotent.

Proof. \(\Rightarrow\). Let \(g\) be a fuzzy left ideal of \(S\). Since \(g \preceq 1\) and \(g \preceq g\), we have \(g \circ g \preceq 1 \circ g \preceq g\). Let now \(a \in S\). By hypothesis and Proposition 2.1, \(S\) is left quasi-regular. Then there exist \(x, y \in S\) such that \(a \leq xaya\). Since \((xa, ya) \in A_a\), we have \(A_a \neq \emptyset\) and
\[
(g \circ g)(a) : = \bigvee_{(u, v) \in A_a} \min\{g(u), g(v)\}
\]
\[
\geq \min\{g(xa), g(ya)\}.
\]
Since \(g\) is a fuzzy left ideal of \(S\), we have \(g(xa) \geq g(a)\), \(g(ya) \geq g(a)\). Thus we have \((g \circ g)(a) \geq \min\{g(a), g(a)\} = g(a)\). Then \(g \preceq g \circ g\), and \(g \circ g = g\).
\[\Leftarrow\]. Let \(L\) be a left ideal of \(S\) and \(a \in L\). Since \(f_L\) is a fuzzy left ideal of \(S\), by hypothesis, we have \(f_L \circ f_L = f_L\). Then we have \((f_L \circ f_L)(a) = f_L(a) = 1\). Since \((f_L \circ f_L)(a) \neq 0\), by Lemma 2.2, there exists \((b, c) \in A_a\) such that \(f_L(b) \neq 0\) and \(f_L(c) \neq 0\). Then we have \(f_L(b) = f_L(c) = 1\), then \(b, c \in L, a \leq bc \in L^2\), and \(a \in (L^2)\). Then \(L \subseteq (L^2) \subseteq (SL) \subseteq (L) = L, \) and \((L^2) = L\). \(\square\)

Proof of the theorem

\[\Rightarrow\]. Let \(f\) be a fuzzy subset of \(S\) and \(a \in S\). Since \(S\) is left quasi-regular, there exist \(x, y \in S\) such that \(a \leq xaya\). Since \((xay, a) \in A_{xay}\), we have \(A_{xay} \neq \emptyset\) and

\[(1 \circ f \circ 1 \circ f)(a) : = \bigvee_{(u,v) \in A_a} \min\{(1 \circ f \circ 1)(u), f(v)\} \geq \min\{(1 \circ f \circ 1)(xay), f(a)\}\]

Since \((x, ay) \in A_{xay}, we have \(A_{xay} \neq \emptyset, and\)

\[(1 \circ f \circ 1)(xay) : = \bigvee_{(w,t) \in A_{xay}} \min\{1(w), (f \circ 1)(t)\} \geq \min\{1(x), (f \circ 1)(ay)\} = (f \circ 1)(ay)\]

Since \((a, y) \in A_{ay}, we have \(A_{ay} \neq \emptyset, and\)

\[(f \circ 1)(ay) : = \bigvee_{(k,h) \in A_{ay}} \min\{f(k), 1(h)\} \geq \min\{f(a), 1(y)\} = f(a)\]

Hence we obtain

\[(1 \circ f \circ 1 \circ f)(a) \geq \min\{(1 \circ f \circ 1)(xay), f(a)\} \geq \min\{(f \circ 1)(ay), f(a)\} \geq \min\{f(a), f(a)\} = f(a)\]

and thus \(f \leq 1 \circ f \circ 1 \circ f\).

\[\Leftarrow\]. Let \(f\) be a fuzzy left ideal of \(S\). By hypothesis, we have

\[f \leq (1 \circ f) \circ (1 \circ f) \leq f \circ f \leq 1 \circ f \leq f,\]

so \(f \circ f = f\). By Proposition 2.2, the left ideals of \(S\) are idempotent. Then, by Proposition 2.1, \(S\) is left quasi-regular. \(\square\)
Definition 2.2 An ordered semigroup S is called right quasi-regular if for every $a \in S$ there exist $x, y \in S$ such that $a \leq axay$.

Equivalent Definitions:
(1) $a \in (aSaS]$ for every $a \in S$.
(2) $A \subseteq (ASAS]$ for every $A \subseteq S$.

The right analogue of the above results also hold, and we have

Theorem 2.2 An ordered semigroup S is right quasi-regular if and only if, for every fuzzy subset f of S, we have

\[f \leq f \circ 1 \circ f \circ 1. \]

3 Semisimple ordered semigroups

In the previous section we characterized the left quasi-regular, and the right quasi-regular ordered semigroups in terms of fuzzy sets. Each left (or right) quasi-regular ordered semigroup is semisimple. In this section we characterize the more general class of semisimple ordered semigroups using fuzzy sets.

Definition 3.1 An ordered semigroup S is called semisimple if for every $a \in S$ there exist $x, y, z \in S$ such that $a \leq xayaz$.

Equivalent Definitions:
(1) $a \in (SaSaS]$ for every $a \in S$ and
(2) $A \subseteq (SASAS]$ for every $A \subseteq S$.

An element a of an ordered semigroup S is called left (resp. right) quasi-regular if $a \in (SaSa]$ (resp. $a \in (aSaS]$), it is called semisimple if $a \in (SaSaS]$, and intra-regular if $a \in (Sa^2S]$.

Proposition 3.1 An ordered semigroup S has a semisimple element if and only if S has an intra-regular element.

Proof. \Longrightarrow. Let a be a semisimple element of S. Then there exist $x, y, z \in S$ such that $a \leq xayaz$. Then we have

\[yaz \leq y(xayaz)z \leq (yx)(xayaz)yaz^2 = yx^2a(yaz)^2z, \]

where $yx^2a, z \in S$, so the element yaz is an intra-regular element of S.

\Longleftarrow. Let a be an intra-regular element of S. Then there exist $x, y \in S$ such that $a \leq xa^2y$. Then we have $a \leq x(xa^2y)ay = x^2a(ay)ay \in SaSaS$, so $a \in (SaSaS]$, and a is a semisimple element of S. \qed

Proposition 3.2 Let S be an ordered semigroup. If an element a of S is left (or right) quasi-regular, then it is semisimple.
Proof. Left a be left quasi-regular element of S. Then we have
\[
 a \in (SaSa) \subseteq (S(SaSa)Sa) \subseteq ((S)(SaS)(S)a] \\
 \subseteq (S^2aSaSa) \subseteq (SaSaS),
\]
and a is semisimple. \square

Proposition 3.3 The ordered semigroup which are left (or right) quasi-
regular are semisimple.

This is an immediate consequence of Proposition 3.2. An independent proof
which shows its pointless character can be obtained by putting "A" ($A \subseteq S$)
instead of "a" in the proof of Proposition 3.2.

Proposition 3.4 (cf. [1; Lemma 2]) An ordered semigroup S is semisimple
if and only if the ideals of S are idempotent.

Exactly as in Proposition 2.1, in the proof of Proposition 3.4 points do not
play any essential role, but the sets. In fact:
\longrightarrow. Let A be an ideal of S. By hypothesis, we have
\[
 A \subseteq ((SA)(AS)] \subseteq (A(SA]) \subseteq (A^2] \subseteq (SA] \subseteq (A] = A,
\]
so $(A^2] = A$.

\Longleftarrow. Let $A \subseteq S$. For the ideal $I(A)$ of S generated by A, by hypothesis, we
have $I(A) = (I(A)^2]$. By putting "A" instead of "a" in the proof of 4) \Rightarrow 5)
in [1; Lemma 2], we get $A \subseteq (SASAS)$.

\square

Proposition 3.5 Let S be an ordered semigroup. The ideals of S are idem-
potent if and only if the fuzzy ideals of S are idempotent.

Proof. \Longrightarrow. Let f be a fuzzy ideal of S. Since $f \preceq 1$ and $f \preceq f$, we
have $f \circ f \preceq 1 \circ f \preceq f$. Let now $a \in S$. By hypothesis and Proposition
3.4, S is semisimple. So there exist $x, y, z \in S$ such that $a \preceq xayaz$. Since
$(xay, az) \in A_a$, we have $A_a \neq \emptyset$ and
\[
 (f \circ f)(a) : = \bigvee_{(u,v) \in A_a} \min\{f(u), f(v)\} \geq \min\{f(xay), f(az)\}.
\]
Since f is a fuzzy ideal of S, we have $f(xay) \geq f(ay) \geq f(a)$, $f(az) \geq f(a)$.
So $(f \circ f)(a) \geq \min\{f(a), f(a)\} = f(a)$. Hence we have $f \leq f \circ f$, and so
$f \circ f = f$.

\Longleftarrow. Let I be an ideal of S and $a \in I$. Since f_I is a fuzzy ideal of S, by
hypothesis, we have $f_I \circ f_I = f_I$, then $(f_I \circ f_I)(a) = f_I(a) = 1$. By Lemma
2.2, there exists $(b, c) \in A_a$ such that $f_I(b) = f_I(c) = 1$, then $b, c \in I$. Hence
we have $a \leq bc \in I^2$, and $a \in (I^2]$. Besides, $(I^2] \subseteq (IS] \subseteq (I] = I$. So I is
idempotent. \square
Theorem 3.1 An ordered semigroup \((S,\cdot,\leq)\) is semisimple if and only if, for every fuzzy subset \(f\) of \(S\), we have

\[f \preceq 1 \circ f \circ 1 \circ f \circ 1. \]

Proof. \(\implies\). Let \(f\) be a fuzzy subset of \(S\) and \(a \in S\). Since \(S\) is semisimple, there exist \(x, y, z \in S\) such that \(a \leq xayaz\). Since \(xayaz \in A_a\), we have \(A_a \neq \emptyset\) and

\[
(1 \circ f \circ 1 \circ f \circ 1)(a) := \bigvee_{(u,v) \in A_a} \min\{(1 \circ f \circ 1)(u), (f \circ 1)(v)\}
\]

\[
\geq \min\{(1 \circ f \circ 1)(xay), (f \circ 1)(az)\}.
\]

Since \((xa, y) \in A_{xay}\), we have \(A_{xay} \neq \emptyset\), and

\[
(1 \circ f \circ 1)(xay) := \bigvee_{(w,t) \in A_{xay}} \min\{(1 \circ f)(w), 1(t)\}
\]

\[
\geq \min\{(1 \circ f)(xa), 1(y)\}
\]

\[
= (1 \circ f)(xa).
\]

Since \((x, a) \in A_{xa}\), we have \(A_{xa} \neq \emptyset\), and

\[
(1 \circ f)(xa) := \bigvee_{(k,h) \in A_{xa}} \min\{1(k), f(h)\}
\]

\[
\geq \min\{1(x), f(a)\}
\]

\[
= f(a).
\]

Since \((a, z) \in A_{az}\), we have \(A_{az} \neq \emptyset\), and

\[
(f \circ 1)(az) := \bigvee_{(s,p) \in A_{az}} \min\{f(s), 1(p)\}
\]

\[
\geq \min\{f(a), 1(z)\}
\]

\[
= f(a).
\]

Hence we obtain

\[
(1 \circ f \circ 1 \circ f \circ 1)(a) \geq \min\{(1 \circ f \circ 1)(xay), (f \circ 1)(az)\}
\]

\[
\geq \min\{(1 \circ f)(xa), f(a)\}
\]

\[
\geq \min\{f(a), f(a)\}
\]

\[
= f(a),
\]

and thus \(f \preceq 1 \circ f \circ 1 \circ f \circ 1\).
\text{Left quasi-regular and semisimple fuzzy ordered semigroups}

\[\iff\quad \text{Let } f \text{ be a fuzzy ideal of } S. \text{ By hypothesis, we have}
\begin{align*}
f \preceq (1 \circ f \circ 1) \circ f \circ 1 & \preceq f \circ f \preceq 1 \circ f \preceq f,
\end{align*}
\]
so \(f \circ f = f\). By Proposition 3.5, the ideals of \(S\) are idempotent. Then, by Proposition 3.4, \(S\) is semisimple.

\textbf{Remark 3.1} The "\(\iff\)" part of Theorem 2.1 can be also proved as follows:
Let \(a \in S\). Consider the characteristic function \(f_{(a)}\) denoted by \(f_a\). This is the mapping of \(S\) into \([0,1]\) defined by \(f_a(x) = 1\) if \(x = a\), \(f_a(x) = 0\) if \(x \neq a\). By hypothesis, we have \((1 \circ f_a \circ 1 \circ f_a)(a) = 1\). By Lemma 2.2, there exists \((x, y) \in A_a\) such that \((1 \circ f_a)(x) \neq 0\) and \((1 \circ f_a)(y) \neq 0\). Again by Lemma 2.2, there exist \((z, t) \in A_x\) and \((h, k) \in A_y\) such that \(f_a(t) \neq 0\) and \(f_a(k) \neq 0\). Then we have \(t = k = a\) and
\[a \leq xy \leq zthk \in SaSa,
\]
so \(a \in (SaSa)\). The "\(\iff\)" part of Theorem 3.1 can be also proved in the same way.

\textbf{References}

Received: March 8, 2012