Absolutely Pure Semimodules

Maher Zayed\(^1\), Sabah A. Bashammakh\(^2\) and A. Y. Abdelwanis\(^3\)

\(^1,2\) King Abdulaziz University, Sciences Faculty For Girls
Department of Mathematics, Jeddah 21413, Saudi Arabia

\(^3\) Cairo University, Faculty of Science
Department of Mathematics, Giza, Egypt

\(1\) e-mail: profmaher@ymail.com
\(2\) e-mail: s_ahmad_a_b@yahoo.com
\(3\) e-mail: ahmedyones2@yahoo.com

Abstract. In the present paper, a semimodule \(M\) over a semiring \(R\) is called absolutely pure if it is pure in every semimodule containing it as a subsemimodule. Some well-known properties of absolutely pure modules are extended to semimodules. We introduce and study two particular subclasses of absolutely pure semimodules, namely strongly absolutely pure (SAP) and finitely injective (\(f\)-injective) semimodules. When the semiring \(R\) is additively idempotent, the SAP \(R\)-semimodules are exactly the \(f\)-injective semimodules. A characterization of Fieldhouse regular semimodules is obtained.

Mathematics Subject Classification: 16Y60, 16B70

Keywords: absolutely pure semimodule, \(f\)-injective semimodule, Fieldhouse regular semimodule

Introduction

The notion of purity in module theory was defined in terms of tensor product. In [3, Thm.2.4], P.M. Cohn proved that a submodule \(M\) of a left module \(N\) (over a ring \(R\)) is pure if every finite system of linear equations \(H\bar{x} = \bar{m}\) with coefficients in \(R\) and parameters from \(M\) is solvable in \(M\) if it is solvable in \(N\). Generally, if \(A\) and \(B\) are \(L\)-structures, where \(L\) is a first-order language, a homomorphism \(f: A \rightarrow B\) is said to be pure if for any positive primitive formula \(\phi\) and any tuple \(\bar{a}\) from \(A\), the validity of \(\phi(f(\bar{a}))\) in \(B\) entails that of \(\phi(\bar{a})\) in \(A\) [12]. This notion of purity was applied to semimodules over an arbitrary semiring and the existence of pure-injective semimodules was proved.
[14, Thm.3] In fact, one can easily show that a subsemimodule M of a left semimodule N (over a semiring R) is pure if every finite system of linear equations $H\bar{x} + \bar{m} = K\bar{x} + \bar{m}'$ with coefficients in R and parameters from M and with a solution in N already has a solution in M. In the present paper, a semimodule M is called absolutely pure if it is pure in every semimodule containing it as a subsemimodule. Some well-known properties of absolutely pure modules are extended to semimodules. For example, every semimodule has a maximal absolutely pure subsemimodule. We introduce and study two particular subclasses of absolutely pure semimodules, namely strongly absolutely pure (SAP) and finitely injective (f-injective) semimodules. A semimodule M is f-injective if and only if $M = \lim \left\{ X_i \right\}_{i\in\mathbb{I}}$, where the X_i are injective semimodules and the morphisms of the directed system $\{X_i\}$ are injective. When the semiring R is additively idempotent, the SAP R-semimodules are exactly the f-injective semimodules. A characterization of Fieldhouse regular semi modules is obtained.

1. Purity in Model theory

In this section, structure means structure for a given finitary similarity type and L is the first-order language of that similarity type. For the basic concepts of model theory we refer to [8]. Let us recall that if A and B are L-structures, a homomorphism $f : A \rightarrow B$ is said to be pure if for any positive primitive (p.p. for short) formula and any tuple \bar{a} from A, the validity of $\phi(f(\bar{a}))$ in B entails that of $\phi(\bar{a})$ in A [12]. Note that every pure map is an isomorphic embedding, therefore these maps are also called pure embeddings. A substructure A of a structure B is called pure if the inclusion of A in B is pure. Elementary embeddings, that is, embeddings that preserve all first-order formulas, are clearly pure.

Lemma 1.1 [10]

Let A and B be two L-structures. The following conditions are equivalent for any embedding $f : A \rightarrow B$.

(i) f is pure

(ii) There is an elementary embedding $g : A \rightarrow C$ that factors through f (i.e. there is a homomorphism $h : B \rightarrow C$ such that $g = hf$).

Remark 1.1

In (ii) above g can be taken to be the diagonal embedding of A into an appropriate ultrapower of A [4, Th.6.4].

Let $R = (R; +, ·, 0, 1)$ be a semiring, i.e. $(R; +, 0)$ is a commutative monoid with identity 0, $(R; ·, 1)$ is a monoid with identity 1, for all $a, b, c ∈ R$, $a.(b+c) = a.b + a.c$ and $(b + c).a = b.a + c.a$. $0.r = 0 = r.0$ for all $r ∈ R$, and $0 ≠ 1$. Let R be a semiring. A left R-semimodule is a commutative monoid $(M; +, 0)$ for which we have a function $R × M → M$, denoted by $(r, m) ↦ r.m$ and called scaler multiplication, which satisfies the following conditions for all elements r and s of R and all elements m and n of M: (1) $(rs)m = r(sm)$; (2) $r(m + n) = rm + rn$; (3) $(r + s)m = rm + sm$; (4) $1.m = m$; (5) $r.0 = 0 = 0.m$. An element m of M is cancellable if $m + m′ = m + m″$ implies that $m′ = m″$. The semimodule M is cancellative if every element of M is cancellable. If every element $m ∈ M$ has an additive inverse $m′ ∈ M$, the semimodule M is called an R-module. For the basic concepts of semirings and semimodules we refer to [7]. Throughout this paper, semimodule means left semimodule over a fixed arbitrary semiring R. By ideal we mean a left ideal of R. By homomorphism, we mean an R-homomorphism. We consider the one-sorted first-order language L_R of left semimodules over a fixed arbitrary semiring R. Recall that a p.p. formula $ϕ(¯x)$ is a formula of the form

$$ϕ(¯x) = ϕ(x_1, ..., x_n) = ∃y_1...y_m(\bigwedge_{i=1}^{t}Ψ_i(¯x, ¯y)),$$

where $¯y = (y_1, ..., y_m)$ and $Ψ_i(¯x, ¯y)$ are atomic formulas, $i = 1, ..., t$.

One can easily show that every atomic formula $Ψ(x_1, ..., x_n)$ of L_R is equivalent, modulo the theory of semimodules, to an equation

$$\sum_{i=1}^{n} a_ix_i = \sum_{i=1}^{n} b_ix_i,$$

where a_i, b_i are semiring elements. So, the p.p. formula $ϕ(¯x)$ can be read as saying there are elements $¯y$ such that $A¯x + B¯y = C¯x + D¯y$, where A, C are matrices (over R) of size $t × n$, B, D are matrices of size $t × m$, and $¯x, ¯y$ are read as column matrices of semimodule elements. Let M, N be two R-semimodules and $f : M → N$ be a pure embedding. This means that f is an injective R-homomorphism, and for any p.p. formula $ϕ(¯x)$ and each tuple $¯m$ from M, if there is a column matrix $¯b$ (of elements of N) such that

$$Af(¯m) + B¯b = Cf(¯m) + D¯b$$

then there is a column matrix $¯c$ (of elements of M) such that

$$A ¯m + B ¯c = C ¯m + D ¯c$$

where $f(¯m) = (f(m_1), ..., f(m_k))$.

The following results follow from the definition of purity.

Lemma 2.1

Let $ϕ(¯x)$ be a p.p. formula in L_R and M be an R-semimodule. Then
(i) $M \models \phi(\overline{0})$.
(ii) If $M \models \phi(\overline{a})$ and $M \models \phi(\overline{b})$, then $M \models \phi(\overline{a} + \overline{b})$.
(iii) If $r \in C(R)$, the center of R, and $M \models \phi(\overline{r})$, then $M \models \phi(r\overline{a})$, where $r\overline{a} = (ra_1, ..., ra_n) = (ra_1, ..., ra_n)$.
(iv) $\phi(M) = \{ \overline{a} \in M^n : M \models \phi(\overline{a}) \}$ is a submonoid of $(M^n, +)$.
(v) If R is commutative, $\phi(M)$ is a subsemimodule of $(M^n, +)$.
(vi) If M is an R-module, $\phi(M)$ is a subgroup of $(M^n, +)$.

Lemma 2.2

Suppose that E, F and G are semimodules over a semiring R such that $E \subset F \subset G$.

(i) If E is pure in F and F is pure in G then E is pure in G.
(ii) If E is pure in G then E is pure in F.

3. Absolutely Pure Semimodules

Let R be a semiring and M be an R-semimodule. If W is the subsemimodule of $M \times M$ defined by $W = \{(m, m) | m \in M \}$ then W induces an R-congruence relation \equiv_W on $M \times M$, called the Bourne relation, defined by setting $(m, n) \equiv_W (m', n')$ if and only if there exist elements w and w' of W such that $(m, n) + w = (m', n') + w'$.

If $(m, n) \in M \times M$ then we write $(m, n)/W$ instead of $(m, n)/\equiv_W$. The factor semimodule $M \times M/ \equiv_W$ is denoted by $M \times M/W$. Since for all $(m, n) \in M \times M$ we have $(m, n)/W + (n, m)/W = (0, 0)/W$, then $M \times M/W$ is an R-module. This left R-module, denoted by M^Δ, is called the R-module of differences of M.

Lemma 3.1 [7]

(i) A subsemimodule of a cancellative semimodule is cancellative.
(ii) Given a semimodule M, there is a homomorphism ξ_M of M into M^Δ, defined by $\xi_M(m) = (m, 0)/W$.
(iii) ξ_M is an embedding if and only if M is cancellative.

Definition

Let Γ be a class of R-semimodules. A semimodule $M \in \Gamma$ is said to be absolutely pure (AP) in Γ, if every embedding of M into a semimodule from Γ, is pure. When Γ is the class of all R-semimodules, M is said to be AP.

Lemma 3.2

(i) A pure subsemimodule M of a module N is a module.
(ii) ξ_M is a pure embedding if and only if M is a module over the semiring R.
(iii) Any cancellative AP semimodule is a module.

Proof.
(i) : Consider the p.p. formula \(\phi(x_1) = \exists x_2(x_1 + x_2 = 0) \), and \(m \in M \). Since \(N \) is a module, then \(N \models \phi(m) \), and so \(M \models \phi(m) \). This means that \(m \) has an additive inverse in \(M \).

(ii) : The "if" part follows from [7, Prop. 14.1] and Lemma 1. The "only if" part follows from (i).

(iii) : It follows from (i) and (ii). \(\square \)

Definition

Let \(M \) be semimodule over a semiring \(R \). For two elements \(a \in R \) and \(m \in M \), the pair \((a, m) \) is said to be compatible if the equation \(ax = m \), has a solution in an extension of \(M \).

Lemma 3.3

Let \(M \) be a cancellative semimodule over a cancellative semiring \(R \). The following statements are equivalent for two elements \(a \in R \) and \(m \in M \):

(i) The pair \((a, m) \) is compatible

(ii) There is a homomorphism \(g : Ra \to M \) such that \(g(a) = m \).

Proof.

(i) \(\Rightarrow \) (ii) There is \(x_o \) in an extension of \(M \) such that \(ax_o = m \). So, if \(x = ra = ta \in Ra \), then \(rm = rax_o = tax_o = tm \). Thus we may define \(g : Ra \to M \) by \(g(ra) = rm \). Of course, \(g \) is a homomorphism and \(g(a) = g(1a) = m \).

(ii) \(\Rightarrow \) (i) : Let \(I = Ra, g : I \to M \) and \(g(a) = m \). We prove that there is an extension \(V \) of \(M \) and there is \(x_o \in V \) such that \(ax_o = m \) in \(V \). Let \(i \) be the inclusion mapping of \(I \) into \(R \) and consider the homomorphism \(\alpha = \xi_M g : I \to M \to \overline{M} \) and \(\beta = \xi_R i : I \to R \to \overline{R} \). We define \(f : I \to \overline{M} \times \overline{R} \) by \(f(t) = (\alpha(t), -\beta(t)) \). Note that \(N = f(I) \) is a subsemimodule of \(\overline{M} \times \overline{R} \) and \(N \) induces an \(R \)-congruence relation "Bourne relation" on \(\overline{M} \times \overline{R} \). Let \(V \) be the factor semimodule \(\overline{M} \times \overline{R}/N \). Let \(\lambda : M \to M \times R \to \overline{M} \times \overline{R} \to V; u \mapsto (u, 0) \mapsto (\xi_M(u), 0) \mapsto (\xi_M(u), 0)/N \) and \(\mu : R \to M \times R \to \overline{M} \times \overline{R} \to V; r \mapsto (0, r) \mapsto (0, \xi_R(r))/N \).

We show that \(\lambda \) is injective: Suppose \(\lambda(u) = \lambda(v) \). Then \((\xi_M(u), 0)/N = (\xi_M(v), 0)/N \) and so there are \(n_1, n_2 \in N \) such that \((\xi_M(u), 0) + n_1 = (\xi_M(v), 0) + n_2 \). If \(n_1 = f(t_1), n_2 = f(t_2) \), then we get \(\xi_M(u) + \alpha(t_1) = \xi_M(v) + \alpha(t_2) \) and \(-\beta(t_1) = -\beta(t_2) \).

Since \(\beta \) is injective and \(M \) is cancellative, then \(\xi_M(u) = \xi_M(v) \), and so \(u = v \). This means that \(V \) is an extension of \(M \). We prove that \(\mu(1) \) is a solution of the equation \(ax = m \) in \(V \), i.e. \(a\mu(1) = \lambda(m) \).

Since \((0, \xi_R(a)) + f(a) = (0, \xi_R(a)) + (\alpha(a), -\beta(a)) = (\alpha(a), 0) = (\xi_M(g(a)), 0) = (\xi_M(m), 0) + f(0) \), then \((0, \xi_R(a))/N = (\xi_M(m), 0)/N \). Thus, \(\mu(a) = \lambda(m) \), and so \(a\mu(1) = \lambda(m) \). \(\square \)

Definition [1]

An \(R \)-semimodule \(M \) is called \(P \)-injective if for any principal ideal \(I \) of \(R \) and each homomorphism \(g : I \to M \), there exists a homomorphism \(f : R \to \)
Corollary 3.4
Every cancellative AP semimodule M over a cancellative semiring R is P-injective.

Proof.
Let $I = Ra, a \in R$, and $g : I \to M$ be a homomorphism. By the preceding Lemma the equation $ax = g(a)$ has a solution in an extension N of M, say, $\lambda : M \to N$. Since M is AR, λ is pure and so the equation $ax = g(a)$ has a solution $m_o \in M$. We define a homomorphism $h : R \to M$, by $h(r) = r m_o$. For any $x = ta \in I$, $g(x) = tg(a) = tam_o = h(x)$. Hence, h extends g and so M is P-injective. \square

Corollary 3.5
Let M be a cancellative semimodule over a cancellative semiring R. The following statements are equivalent:

(i) M is P-injective.

(ii) For any compatible pair $(a, m) \in R \times M$, the equation $ax = m$ has a solution in M.

Proof.
(i) \Rightarrow (ii): Suppose (a, m) is compatible. By Lemma 3.3, there is a homomorphism $g : Ra \to M$ such that $g(a) = m$. Since M is P-injective, there is a homomorphism $f : R \to M$, extends g. Observe that $ah(1) = h(a.1) = h(a) = g(a) = m$, and so $h(1) \in M$ is a solution of \otimes.

(ii) \Rightarrow (i): Let $I = Ra, a \in R$, $g : I \to M$ be any homomorphism and $m_o = g(a)$. By Lemma 3.3, the equation $ax = m_o$ has a solution in an extension of M. Under the hypothesis (ii), this equation has a solution $u_o \in M$. We define a homomorphism $h : R \to M$, by $h(r) = ru_o$. One easily sees that h extends g. \square

Proposition 3.6
Every pure subsemimodule M of a P-injective semimodule N is P-injective.

Proof.
Let $I = Ra, a \in R$, and $g : I \to M$ be a homomorphism. Since $i : M \subseteq N$, and N is P-injective, there exists a homomorphism $f : R \to N$, which extends g. Hence, $i g(a) = g(a) = f(a) = m_o \in M$. Let $f(1) = n_o \in N$ and consider the equation $\otimes : ax = m_o$. Since $an_o = af(1) = f(a.1) = f(a) = m_o$, then \otimes has a solution in N. Observe that $i : M \subseteq N$ is pure.
and so \oplus has a solution $u_o \in M$ (i.e. $au_o = m_o$). Now, define a homomorphism $h : R \to M$ by $h(r) = ru_o$. Since $h(ra) = rau_o = rm_o = rg(a) = g(ra)$, then h extends g and so M is P-injective.

In [14, Thm.5], it was proved that the first order theory T of cancellative semimodules over an arbitrary semiring R has the amalgamation property. As an application we have:

Proposition 3.7.

Every pure subsemimodule M of a cancellative AP semimodule N is AP in the class of cancellative semimodules.

Proof.

Consider the following diagram, where f_1, f_2 are the identical inclusions, f_1 is pure and H is a cancellative semimodule

\[\begin{array}{ccc}
N & \xrightarrow{f_1} & M \\
\downarrow & & \downarrow \\
H & \xleftarrow{f_2} & \end{array} \]

Let $(\oplus)"A\bar{x} + \overline{m} = B\bar{x} + \overline{m}'"$ be a finite system of linear equations with coefficients in R and parameters from M and with a solution in H. By [14, Thm.5], there is a cancellative semimodule F and embeddings $g_i, i = 1, 2$, such that

the following diagram is commutative.

\[\begin{array}{ccc}
N & \xrightarrow{f_1} & M \\
\downarrow & & \downarrow \\
F & \xleftarrow{g_i} & H \\
\downarrow & & \\
H & \xleftarrow{g_2} & \end{array} \]

It follows that (\oplus) has a solution in F. Since f_1 and g_1 are pure, (\oplus) has a solution in M and so M is AP in the class of cancellative semimodules.

Theorem 3.8.

(i) If $X_0 \subset X_1 \subset \ldots \subset X_\beta \subset \ldots, \beta < \alpha$ is a chain of AP semimodules, where α is an ordinal, then the union of the chain is AP.

(ii) Every semimodule has a maximal AP subsemimodule.

Proof.
(i) Let $M = \cup X_\beta$ and suppose that $M \subset N$. Let $(\otimes) : A\overline{x} + \overline{m} = B\overline{x} + \overline{m'}$ be a finite system of linear equations with coefficients in R and parameters from M and with a solution in N. There is an ordinal γ such that the elements of the column matrices \overline{m} and $\overline{m'}$ are in $X_\gamma \subset M \subset N$. Therefore one can consider \otimes as a finite system of linear equations with coefficients in R and parameters from X_γ and with a solution in N. Since $X_\gamma \subset N$, \otimes has a solution in $X_\gamma \subset M$.

(ii) Given a semimodule E, consider the set Ω of all subsemimodules of E that are AP semimodules. Observe that Ω is not empty, for the zero semimodule belongs to Ω. Partially order Ω by inclusion. If \mathcal{F} is a chain in Ω then $\cup \mathcal{F}$ is AP by (i). Now the result follows by applying Zorn’s Lemma. □

4. SAP Semimodules

In [2], Azumaya introduced the notion of locally split homomorphisms to study regular modules. Locally split submodules were introduced by Ramamurthi and Rangaswamy [9], by the name of strongly pure submodules, to study strongly absolutely pure (SAP) and finitely injective (f-injective in the sense of [13]) modules. In this section we extend these notions for semimodules over an arbitrary semiring. Let R be a semiring and M be an R-semimodule.

M is said to be finitely injective (f-injective for short) if given any injective homomorphism $F \to Y$, where F is a finitely generated semimodule, any homomorphism $F \to M$ can be extended to a homomorphism $Y \to M$. Note that every injective semimodule is f-injective. We call a subsemimodule M of a semimodule N strongly pure if to any finite set $\{m_1, ..., m_k\}$ of elements of M there exists a homomorphism $\alpha : N \to M$ such that $\alpha(m_i) = m_i$, $i = 1, ..., k$. Finally, a semimodule M is said to be strongly absolutely pure (SAP for short) if M is strongly pure in every R-semimodule containing it as a subsemimodule.

Proposition 4.1

Suppose that E, F and G are semimodules over a semiring R such that $E \subset F \subset G$.

(i) If E is strongly pure in F and F is strongly pure in G then E is strongly pure in G.

(ii) If E is strongly pure in G then E is strongly pure in F.

(iii) If E is strongly pure in F then E is pure in F.

(iv) If E is pure in F, where F is a projective semimodule, then E is strongly pure in F.

(v) If E is pure in F, where E is finitely generated and F is projective, then E is projective.

Proof.

(i) and (ii) are obvious. (iii) : Let $(\otimes) \ " A\overline{x} + \overline{u} = B\overline{x} + \overline{v} "$ be a finite system of linear equations with coefficients in R and parameters from E and with a solution \overline{v} in F. Let $\{u_1, ..., u_t, v_1, ..., v_t\} \subset E$ be the elements of...
Absolutely pure semimodules

the column matrices \(\overline{u}, \overline{v} \). Under the hypothesis, there exists a homomorphism \(\alpha : F \to E \), such that

\[
\alpha(u_i) = u_i, \quad \alpha(v_i) = v_i.
\]

It follows that \(A \alpha(\overline{v}) + B = B \alpha(\overline{v}) + \overline{v} \), and so \(\alpha(\overline{v}) \) is solution of \(\mathcal{R} \) in \(E \). (iv): If \(f : E \subseteq F \) is pure, then by Lemma 1, there is an ultrafilter \(u \) over an infinite set \(I \) and a homomorphism \(h : F \to E^I/u \) such that \(h f = \delta \), where \(\delta : E \to E^I/u \) is the diagonal embedding of \(E \) into an ultrapower of \(E \). Let \(\phi : E^I \to E^I/u \) be the canonical homomorphism. Since \(F \) is projective, there exists a homomorphism \(g : F \to E^I \) such that \(\phi g = h \). Let \(\{e_1, \ldots, e_n\} \) be a finite set of elements of \(E \). For each \(e_k \), \(1 \leq k \leq n \), \(\delta(e_k) = h(e_k) = \phi g(e_k) = g(e_k)/u \). Hence there exists a set \(\Omega_k \subseteq u \) such that \(g(e_k)(i) = e_k \) for all \(i \in \Omega_k \). Let \(\Omega = \cap \Omega_k \subseteq u \), and define a homomorphism \(\alpha = p_i g : F \to E^I \to E \), where \(p_i \) is the canonical projection, \(i \in \Omega \). It follows that \(\alpha(e_k) = e_k, 1 \leq k \leq n \), and so \(E \) is strongly pure in \(F \).

(v): Let \(\{e_1, \ldots, e_n\} \) be a finite set of generators of \(E \). Since \(E \subseteq F \) is strongly pure, there exists a homomorphism \(\alpha : F \to E \) such that \(\alpha(e_i) = e_i, i = 1, \ldots, n \). It follows that \(E \) is a retract of \(F \) and so \(E \) is projective. □

Corollary 4.2

Every SAP semimodule is AP

Proposition 4.3

Let \(R \) be a semiring, \(N \) be an \(R \)-module and \(M \) be a subsemimodule of \(N \). The following statements are equivalent:

(i) \(M \subset N \) is strongly pure.

(ii) \(M \subset N \) is pure and for any element \(x_o \in M \) there exists a homomorphism \(\alpha : N \to M \) such that \(\alpha(x_o) = x_o \).

Proof.

(i) \(\implies \) (ii): By Lemma 3.2(i) \(M \) is a module. Let \(\{x_1, \ldots, x_n\} \) be any finite set of elements of \(M \). We prove by induction, suppose \(n \geq 2 \) and our statement is true for \(n - 1 \). This means that there is a homomorphism \(\alpha : N \to M \) such that \(\alpha(x_k) = x_k \) for \(k = 1, 2, \ldots, n - 1 \). Since \((x_n - \alpha(x_n)) \subseteq M \), there is a \(\beta : N \to M \) such that \(\beta(x_n - \alpha(x_n)) = x_n - \alpha(x_n) \). Let \(\delta = \alpha + \beta - \beta i \alpha : N \to M \), where \(i : M \subset N \) is the inclusion map. Then for any \(k, k = 1, 2, \ldots, n - 1 \), \(\delta(x_k) = \alpha(x_k) + \beta(x_k) - \beta i \alpha(x_k) = x_k + \beta(x_k) - \beta(x_k) = x_k \). And \(\delta(x_n) = \alpha(x_n) + \beta(x_n) - \beta i \alpha(x_n) = \alpha(x_n) + \beta(x_n - \alpha(x_n)) = \alpha(x_n) + x_n - \alpha(x_n) = x_n \). Thus \(M \) is strongly pure in \(N \). □

The following result connects finite injectivity with strong purity.

Proposition 4.4

Every \(f \)-injective semimodule is SAP.

Proof.
Let \(M \subset N \), where \(M \) is an \(f \)-injective semimodule. For any finite set \(T = \{m_1, \ldots, m_k\} \) of elements of \(M \), let \(F \) be the semimodule generated by \(T \). Consider the inclusion maps \(f : F \subset N \) and \(j : F \rightarrow M \). There exists a homomorphism \(\alpha : N \rightarrow M \), such that \(\alpha f = j \). Observe that \(\alpha(x) = x \), for all \(x \in F \), and so \(M \) is SAP.

Proposition 4.5

Every \(f \)-injective semimodule \(M \) contains an injective hull of each of its finitely generated subsemimodule.

Proof.

Let \(F \subset M \) be a finitely generated subsemimodule of \(M \) with an injective hull \(E \). Consider the inclusion maps \(i : F \subset M \) and \(j : F \subset E \). Since \(M \) is \(f \)-injective semimodule, there exists a homomorphism \(h : E \rightarrow M \) such that \(h j = i \). Observe that \(h \) is injective since \(i \) is injective and \(j \) is essential.

Corollary 4.6

Every finitely generated \(f \)-injective semimodule \(M \) is injective.

Theorem 4.7

(i) If \(X_0 \subset X_1 \subset \ldots \subset X_\beta \subset \ldots, \beta \prec \alpha \), is a chain of \(f \)-injective semimodules, where \(\alpha \) is an ordinal, then the union of the chain is \(f \)-injective.

(ii) Every semimodule has a maximal \(f \)-injective subsemimodule

(iii) A semimodule \(M \) is \(f \)-injective if and only if \(M = \lim \{ X_i \} \), where the \(X_i \) are injective semimodules and the morphisms of the directed system \(\{ X_i \} \) are injective.

Proof.

We prove only (iii). Note that \(M = \lim \{ F_i, \alpha_{ij} \} \), \(i, j \in I \), where \(\{ F_i \} \) is the family of all finitely generated subsemimodules of \(M \) and the morphisms \(\{ \alpha_{ij} \} \) are the inclusion maps. Since \(M \) is \(f \)-injective, it contains an injective hull \(\hat{F}_i \) of each \(F_i \). One can easily check that \(M = \hat{\bigcup \{ F_i \}} \) and the \(\alpha_{ij} : F_i \rightarrow F_j \) induce injective homomorphisms \(\hat{\alpha}_{ij} : \hat{F}_i \rightarrow \hat{F}_j \), such that \(\{ \hat{F}_i, \hat{\alpha}_{ij} \} \) is a directed system and \(M = \lim \{ \hat{F}_i \} \).

Remark. 4.1

If \(R \) is a ring, then it is well-known that every \(R \)-module is contained in an injective \(R \)-module. However, for arbitrary semirings \(R \) this is not the case; e.g. there are no nonzero injective \(\mathbb{N} \)-semimodules. In [11], H. Wang proved that every \(R \)-semimodule has an injective hull, in the case that \(R \) is additively idempotent (i.e. a semiring satisfying \(r + r = r \) for all \(r \in R \)). For these semirings we prove the converse of Proposition 4.4.

Theorem 4.8

Let \(R \) be an additively idempotent semiring. Then an \(R \)-semimodule \(M \) is \(f \)-injective if and only if \(M \) is SAP.

Proof.

Suppose \(M \) is SAP. Let \(i : E \subset Y \), with \(E \) finitely generated by \(\{ e_1, \ldots, e_n \} \).
Absolutely pure semimodules

Let M be the injective hull of M and $j : M \to \tilde{M}$. Since \tilde{M} is injective, there is $h : Y \to \tilde{M}$ such that $hi = jg$. Note that $\{g(e_k) : 1 \leq k \leq n\} \subset M$ and M is SAP. Hence there exists a homomorphism $\alpha : \tilde{M} \to M$ such that $\alpha(g(e_k)) = g(e_k), 1 \leq k \leq n$. One can easily show that $\beta = \alpha h$ extends g and so M is f-injective. □

5. Regular Semimodules

A semiring R is said to be von Neumann regular if for each $a \in R$, there is some $b \in R$ such that $a = aba$. In [6], Fieldhouse generalized the concept of Von Neumann’s regular rings to the module case: a module M (over a ring) is said to be regular if every submodule of M is pure in M. We extend this concept to semimodules over an arbitrary semiring R. An R-semimodule M is said to be Fieldhouse regular if every subsemimodule of M is pure in M.

Theorem 5.1

For any R-semimodule M the following statements are equivalent:

(i) M is Fieldhouse regular.

(ii) Every finitely generated subsemimodule of M is pure in M.

If M is projective one can add:

(iii) Every finitely generated subsemimodule of M is a retract of M.

Proof.

(i) \implies (ii) is trivial.

(ii) \implies (i): Let $E \subset M$. Note that $E = \lim_{\to} \{ F_i, \alpha_{ij} \}, i, j \in I$, where $\{ F_i \}$ is the family of all finitely generated subsemimodules of M and the morphisms $\{ \alpha_{ij} \}$ are the inclusion maps. To show that E is pure in M, let $(\otimes) "A\overline{\pi} + \overline{\eta} = B\overline{\pi} + \overline{\eta}"$ be a finite system of linear equations with coefficients in R and parameters from E and with a solution $\overline{\eta}$ in M. Let $\{ u_1, \ldots, u_t, v_1, \ldots, v_t \} \subset E$ be the elements of the column matrices $\overline{\eta}, \overline{\eta}$.

There is $k \in I$ such that $\{ u_1, \ldots, u_t, v_1, \ldots, v_t \} \subset F_k \subset E \subset M$. Therefore one can consider \otimes as a finite system of linear equations with coefficients in R and parameters from F_k and with a solution in M. Since F_k is pure M, \otimes has a solution in F_k. Thus E is pure in M and so M is Fieldhouse regular. Now suppose M is projective Fieldhouse regular and E is a finitely generated subsemimodule of M. Let $\{ e_1, \ldots, e_n \}$ be a finite set of generators of E. By Proposition 4.1, $E \subset M$ is strongly pure, thus there exists a homomorphism $\alpha : M \to E$ such that $\alpha(e_i) = e_i, i = 1, \ldots, n$. It follows that E is a retract of M. □

Corollary 5.2

For any semiring R consider the following statements:

(i) Every ideal of R is strongly pure in $R R$.

(ii) $R R$ is strongly regular.

(iii) Every principal ideal of R is pure in R.
(iv) R is Von Neumann regular.

Then (i) \iff (ii) \implies (iii) \iff (iv).

Proof.

(i)\implies(ii) and (ii) \implies (iii) are trivial. (ii) \implies (i) follows from Proposition 4.1.

(iii) \implies (iv): For each $a \in R$, Ra is a pure subsemimodule of the R-semimodule R. The equation $ax + 0 = 0 + a$, with parameters from Ra, has a solution $(x = 1)$ in R. So, it has a solution in Ra. This means that there is $x_o = ra \in Ra$, for some $r \in R$, such that $ax_o = a$. Thus $ara = a$, and so R is von Neumann regular.

(iv) \implies (iii): Suppose R is von Neumann regular and $I = Ra$. There is $b \in R$ such that $a = aba$. Let $e = ba$ and note that $e^2 = baba = ba = e$. Hence $I = Re$. If $\theta : Re \rightarrow R$ is the inclusion map and $\alpha : R \rightarrow Re$, $\alpha(r) = re$, then $\alpha \theta = 1_{Re}$.

This means that $I = Re$ is a retract of R, and, in particular, I is pure in R. \Box

Corollary 5.3

If every R-semimodule is AP then R is von Neumann regular.

Remark 5.1

For any ring R, the converse of the preceding Corollary is true [5]. On the other hand, the semiring $R = Q^+$ is von Neumann regular and $M = R$ is not AP.

Remark 5.2

For any cancellative semiring R the following statements are equivalent:

(i) Every R- semimodule is AP.

(ii) Every cancellative R-semimodule is AP.

(iii) R is a regular ring.

Semimodules over rins are modules, so (iii) \implies (i) follows. (i) \implies (ii) is obvious.

Now suppose (ii), then R is a module, i.e. R is a ring. Indeed, R is a regular ring.

References

Received: August, 2011