Some Sufficient Conditions for Solvability
of Finite Groups

Liguo He and Wei Shang

Dept. of Math., Shenyang University of Technology
Shenyang, 110870, P.R. China
cowleyhe@yahoo.com.cn

Abstract

Let G be a finite group. Suppose that none of degrees of irreducible
characters (lengths of conjugacy classes, respectively) are divisible by
3 or 5. In this note, we prove that G is solvable, and the odd prime
number pair $(3, 5)$ is unique in order to guarantee the solvability of G.

Mathematics Subject Classification: 20C15

Keywords: solvable group, character, conjugacy class

1 Introduction

The celebrated Odd Order Theorem of Feit-Thompson [4] shows that if the
order of the finite group G is not divisible by prime 2, then G is solvable. It is
a natural question whether there exists another distinct prime p such that if p
does not divide the order $|G|$, then G is solvable. D. Gorenstein pointed out
that a finite group G is solvable if its order $|G|$ is coprime to 15. It is indeed
proved in [5] that there is nonexistence of a single prime $p(\neq 2)$ such that if $p \mid
|G|$ then G is solvable. Furthermore, if allowing for two primes (excluding 2),
then the only choice is $pq = 15$ such that if $(pq, |G|) = 1$ then G is solvable.
Here p, q are two different primes. In this note we generalize this result in
terms of character degrees and conjugacy class lengths of a finite group. In
particular, we prove the following results.

Theorem A. Assume that none of irreducible character degrees of the
finite group G are divisible by 3 or 5. Then G is solvable.

Theorem B. Assume that none of conjugacy class lengths of the finite
group G are divisible by 3 or 5. Then G is solvable.

We also prove that, in the results above, the odd prime pair $(3, 5)$ is unique.
2 Proofs of results

The following result is the famous Ito-Micheler theorem, which can be found in [6, Theorem 13.1, Remarks 13.13].

Theorem 2.1. Let G be a finite group and p be a prime divisor of $|G|$. And let $cd(G)$ denote the set of degrees of irreducible characters of G. Then p does not divide any member of $cd(G)$ if and only the Sylow p-subgroup of G is normal and abelian.

Theorem 2.2. If every irreducible character degree of the finite group G is relatively prime to 15, then G is solvable.

Proof. If $|G|$ is coprime to 15, then G is solvable by Gorenstein’s result. Otherwise, either 3 or 5 divides $|G|$, the application of the above Ito-Micheler’s theorem on G yields that G has an abelian and normal Sylow subgroup N. The inductive hypothesis applies, we get that G/N is solvable, and so G is solvable since N is solvable. \[\square\]

Observe that the set of the irreducible character degrees of A_5 is $cd(A_5) = \{1, 3, 4, 5\}$, the pair $(3, 5)$ is the only “odd” prime pair choice for theorem 2.2. We call n is a character solvable number if n is coprime to every degree of irreducible character of G, then G is solvable. By the theorem above, 15 is a character solvable number. We further obtain the following result.

Theorem 2.3. Assume that n is an odd number. Then n is a character solvable number if and only if n is divisible by 15.

Proof. By the above theorem, the “if” part is immediate. Now we deal with the “only if” part. The alternating group A_5 implies that $3 \mid n$ or $5 \mid n$. It is known that A_6 has two irreducible characters whose degrees are 9 and 10 respectively. Note that $3 \mid 9$ but $5 \nmid 9$, and $3 \nmid 10$ but $5 \mid 10$. Thus the only possibility choosing n is that 15 divides n, as desired. \[\square\]

Let n be a positive integer, by n_p, we denote the biggest p-power divisor of n. If $p \nmid n$, set $n_p = 1$. The following consequence is the main result of [1], which is proved by using the method of prime graph. The result is independent of interest. It can also be proved by using the technique of p-block of defect 0. Note that both of these proofs depend heavily on the classification theorem of finite simple groups.

Theorem 2.4. Let G be a finite nonabelian simple group and p a prime number. Then there exists $x \in G$ such that $|x^G|_p = |G|_p$.

Theorem 2.5. If every conjugacy class length of finite nonabelian group G is relatively prime to 15, then G is solvable.
Proof. If $|G|$ is coprime to 15, then G is solvable by Gorenstein’s result. Otherwise, either 3 or 5 divides $|G|$. If G is a simple group, then theorem 2.5 implies that G has a conjugacy class whose length equals $|G|_p$ for $p = 3$ or 5. This contradicts our hypothesis. Thus G is not a simple group.

Let N be a proper normal subgroup of G. Without loss of generality, we may assume that both N and G/N are nonabelian. Note that the lengths of conjugacy classes of N and G/N are relatively prime to 15. Using the inductive argument, we get that G/N and N are solvable, then G is solvable, as desired.

We mention that the nontrivial conjugacy class lengths of A_5 are $\{12, 15, 20\}$, thus the pair $(3, 5)$ is also the only “odd” prime pair choice for theorem 2.6. We further obtain the following result. We call n a conjugacy class solvable number if n is coprime to every nontrivial conjugacy class length of G, then G is solvable.

Theorem 2.6. Suppose that n is an odd number. Then n is a conjugacy class solvable number if and only if n is divisible by 15.

Proof. The “if” part is immediate from theorem 2.5. Now we deal with “only if” part. Considering the nontrivial conjugacy class lengths of A_5 are $\{12, 15, 20\}$, we get that n is divisible by 3 or 5. Suppose that $3 \mid n$ but $5 \nmid n$. Because the classical group $PSL(3, 3)$ is of order $2^4 \cdot 3^3 \cdot 13$, we conclude via theorem 2.4 that this case does not occurs. If $5 \mid n$ but $3 \nmid n$, then the exceptional group $Sz(2^3)$ is a counterexample since its order is $2^6 \cdot 5 \cdot 13 \cdot 7 \cdot 13$. Therefore n must be divided by 15. The proof is finished.

We observe that it may be proved by results of [3] that if all conjgacy class lengths or all irreducible character degrees of G are of odd number, then G is solvable.

References

Received: September, 2011