On the Prime Spectrum of a Module
over Noncommutative Rings

Gürsel Yeşilot

Yıldız Technical University
Department of Mathematics
Davutpaşa-Istanbul, Turkey
gyesilot@yildiz.edu.tr

Abstract. Let R be an associative ring with identity and M an R-module. Let $\text{Spec} (M)$ be the set of all prime submodules of M. We topologize $\text{Spec} (M)$ with the Zariski topology and prove some useful results.

Mathematics Subject Classification: Primary 16D99; Secondary 16D25

Keywords: Prime submodules, Zariski topology

In this paper, we always assume that a ring is associative with identity, and by an ideal we mean a 2-sided ideal. Let R be a associative ring with identity and M be a left R-module. By a prime submodule (or a p-prime submodule) of M, we mean a proper submodule P with $(P : M) = \{ r \in R : rM \subseteq P \} = p$ such that $rRm \subseteq P$ for $r \in R$ and $m \in M$ implies that either $m \in P$ or $r \in p$. Recall that a proper ideal P of a ring R is called prime if $aRb \subseteq P$ implies that either $a \in P$ or $b \in P$. It is clear that if N is a prime submodule, then $(N : M) = \{ r \in R : rM \subseteq N \}$ is a prime ideal of R. The set of all prime submodules of M is called the prime spectrum of M and denoted by $\text{Spec} (M)$ or X^M. Several authors have extended the notation of prime ideals to modules (see, for example, [1], [5] - [8], [11]). Note that $\text{Spec} (M)$ may be empty (see, 7). Throughout this paper we assume that $\text{Spec} (M)$ is not empty. We introduce a topology called the Zariski topology on $X^M = \text{Spec} (M)$ for any R-module, in which closed sets are varieties $V (N) = \{ P \in X^M : N \subseteq P \}$ where N is a subset of an R-module M. Clearly,
\(V(E) = V(S) \) where \(S \) is an \(R \)-submodule of \(M \) generated by a subset \(E \) of \(M \). We write \(N \leq M \) to indicate that \(N \) is a submodule of \(M \).

Recall that a ring \(R \) is called prime if \((0)\) is prime ideal of \(R \).

Definition 1. Let \(M \) be an \(R \) module. Then a proper submodule \(N \) of \(M \) is reducible if it can be written as the intersection \(N = S_1 \cap S_2 \) of two submodules \(S_1, S_2 \) with \(N \neq S_1 \) and \(N \neq S_2 \), otherwise \(N \) is irreducible.

Proposition 1. For any subset \(E \) of \(M \), we consider varieties denoted by \(V(E) \). We define \(V(E) = \{ P \in \text{Spec}(M) : E \subseteq P \} \). Then

\[
(a) \text{ If } N \text{ is a submodule generated by } E, \text{ then } V^R(E) = V^R(N).
(b) \quad V(0_M) = \text{Spec}(M) \text{ and } V(M) = \emptyset.
(c) \quad \bigcap_{i \in J} V(N_i) = V\left(\sum_{i \in J} N_i\right) \text{ for any index set } J.
(d) \quad V(N) \cup V(L) \subseteq V(N \cap L), \text{ where } N, L \leq M.
\]

Proof. [see, [2] – [4]].

Our purpose is to study modules for which the inclusion of \((d)\) proposition 1 is always an equality. These modules called Top-module.

An \(R \)-module \(M \) is called a multiplication module if for each \(N \leq M \), there exists an ideal \(I \leq R \) such that \(N = IM \). Then, \(N = (N : M) M \). Indeed, \(N = IM \subseteq (IM : M) M = (N : M) M \subseteq N \). If \(N \) is a prime submodule of a multiplication \(R \)-module \(M \), then \(N_1 \cap N_2 \subseteq N \) implies \(N_1 \subseteq N \) or \(N_2 \subseteq N \) where \(N_1, N_2 \leq M \) [see, for more detail, [9] – [10]].

Proposition 2. Every multiplication module is a Top-module.

Proof. Let \(N \in V(N_1 \cap N_2) \) and so \(N_1 \cap N_2 \subseteq N \). Then, \(N_1 \subseteq N \) or \(N_2 \subseteq N \). Therefore \(N \in V(N_1) \) or \(N \in V(N_2) \).

Definition 2. Let \(M \) be an \(R \)-module. For every subset \(Y \) of \(X^M \), let us denote by \(J(Y) \) the intersection of all prime submodules of \(M \) which belong to \(Y \).

Definition 3. Let \(M \) be an \(R \) module. \(M \) is distributive if it satisfy the following condition \((S_1 + S_2) \cap N = (S_1 \cap N) + (S_2 \cap N)\) for all submodules \(S_1, S_2 \) and \(N \) of \(M \).

For any submodule \(N \) of an \(R \)-module \(M \), the radical, \(\text{rad}N \), of \(N \) is defined to be the intersection of all prime submodules of \(M \) containing \(N \), and in case \(N \) is not contained in any prime submodule then \(\text{rad}N \) is defined to be \(M \). The radical of the module \(M \) is defined to be \(\text{rad}(0) \).
Theorem 1. \(M \) is a Top-module and \(\text{rad} S = S \) for each submodule \(S \) of \(M \). Then \(M \) is a distributive module.

Proof. Let \(S_1, S_2 \) and \(N \) be any submodules of \(M \). Then,
\[
(S_1 + S_2) \cap N = \text{rad}((S_1 + S_2) \cap N)
\]
\[
= J(V((S_1 + S_2) \cap N))
\]
\[
= J(V(S_1 + S_2) \cup V(N))
\]
\[
= J(V(S_1 \cup S_2) \cup V(N))
\]
\[
= J(V(S_1) \cap V(S_2)) \cup V(N))
\]
\[
= J(V(S_1) \cup V(N)) \cap (V(S_2) \cup V(N))
\]
\[
= J(V(S_1 \cap N) \cap V(S_2 \cap N))
\]
\[
= J(V(S_1 \cap N) \cap V(N))
\]
\[
= J(V(S_1 \cap N) \cap (S_2 \cap N))
\]
\[
= J(V(S_1 \cap N) \cap (S_2 \cap N))
\]
\[
= \text{rad}((S_1 \cap N) \cap (S_2 \cap N))
\]
\[
= (S_1 \cap N) \cap (S_2 \cap N)
\]

\[\blacksquare\]

Lemma 1. Let \(M \) be a Top-module and \(N_1, N_2 \) be two submodules of \(M \). Then the equalities \(\text{rad}(N_1 \cap N_2) = \text{rad}N_1 \cap \text{rad}N_2 \) holds.

Proof. \(\text{rad}(N_1 \cap N_2) = J(V(N_1 \cap N_2)) \)
\[
= J(V(N_1) \cup V(N_2))
\]
\[
= J(V(N_1) \cap J(V(N_2))
\]
\[
= \text{rad}N_1 \cap \text{rad}N_2 \]

Note that the closure of a subset \(Y \) of \(\text{Spec}(M) \) denoted by \(\overline{Y} \).

Theorem 2. Let \(M \) be a Top-module. Then \(\overline{Y} = V((J(Y)) \).
Proof. Let $V(S)$ be a closed set containing Y. Then $S \subseteq N$ for every prime submodule N in Y, so $S \subseteq J(Y)$ and consequently $V(J(Y)) \subseteq V(S)$. Since $Y \subseteq V(J(Y))$, then $V(J(Y))$ is the smallest closed subset of X^M containing Y. Thus $\overline{Y} = V((J(Y))$.

A topological space X is T_1-space if and only if given any two distinct points x and y in X, each lies in an open sets which does not contain the other.

Theorem 3. X^M is T_1-space if and only if each prime submodule is maximal in the family of all prime submodule of M.

Proof. Suppose N is maximal in $\text{Spec}(M)$. Then $\{N\} = V(J(N)) = V(N)$ and since N is maximal submodule so $\{N\} = \{N\}$, this means $\{N\}$ is closed. Then X^M is a T_1-space, and vice versa.

Definition 4. A topological space X is called irreducible if every finite intersection of non-empty open sets of X is non-empty.

Proposition 3. Let M be a Top-module and Y a subset of X^M. If $J(Y)$ is prime submodule, then Y is an irreducible space.

Proof. Suppose $N = J(Y)$ prime submodule. $\overline{Y} = V(J(Y)) = V(N)$ by Theorem 2. $\overline{Y} = V(N) = V(J(N)) = \{N\}$. As a set consisting of a single element is irreducible, then $\{N\}$ is irreducible, that is \overline{Y} is irreducible. Then Y is irreducible.

Corollary 1. Let M be a Top-module. Then $V(N)$ is an irreducible space for every prime submodule N.

Proof. Since $J(V(N)) = \bigcap_{N \subseteq P} P = \text{rad}N = N$, $V(N)$ is irreducible space by proposition 3.

We denote the complement of $V(N)$ by $D(N)$. Note that $D(m) = D(Rm)$ for every $m \in M$.

Theorem 4. Let M be a Top-module. Then the sets $D(m_i) (i \in I)$ form a base of X^M.

Proof. Let \(D(S) \) be an open set, where \(S \) is a submodule of \(M \) which is in the form \(S = \bigcup_{i \in I} \{m_i\}, m_i \in S \), then \(D(S) = D(\bigcup_{i \in I} \{m_i\}) = \bigcup_{i \in I} D(m_i) \).

Theorem 5. Let \(M \) be a Noetherian Top-module. Then each open set of \(X^M \) is compact.

Proof. Suppose \(D(S) \) is an open set of \(X \). Let \(\{D(m_i)\}_{i \in I} \) be a basic open cover, \(m_i \in M \), for each \(i \in I \).

\[
D(S) \subseteq \bigcup_{i \in I} D(m_i) = D(\bigcup_{i \in I} m_i) \quad \text{where} \quad K \text{ is the submodule of } M \text{ generated by } A = \{m_i\}_{i \in I}.
\]

Since \(M \) is Noetherian, \(K \) is finitely generated. Let \(K = \langle b_1, \ldots, b_r \rangle \).

Thus, \(b_i = \sum_{j=1}^{r} r_{ij}m_{ij} \) where \(m_{ij} \in A \).

That is there exists \(\{m_{i1}, \ldots, m_{in}\} \subseteq A \) such that \(K = \langle m_{i1}, \ldots, m_{in} \rangle \).

Thus \(D(S) \subseteq D(\langle m_{i1}, \ldots, m_{in} \rangle) \) so \(D(S) \subseteq \bigcup_{i=1}^{n} D(m_i) \).

Thus \(D(S) \) is compact.

Proposition 4. Let \(M \) be a Top-module such that every open set of \(\text{spec}(M) \) is compact and \(\text{rad}S = S \) for each submodule \(S \) of \(M \). Then \(M \) is Noetherian module.

Proof. Let \(S_1 \subseteq S_2 \subseteq \ldots \subseteq S_n \subseteq \ldots \) be an ascending chain of submodules of \(M \).

Then \(D(S_1) \subseteq D(S_2) \subseteq \ldots \subseteq D(S_n) \subseteq \ldots \). Let \(K = \bigcup_{i \in I} S_i \).

Then \(D(K) = D(\bigcup_{i \in I} S_i) = \bigcup_{i \in I} D(S_i) \).

Thus by Theorem 5, \(D(K) = \bigcup_{i=1}^{n} D(S_i) \) and \(V(K) = V(\bigcup_{i=1}^{n} S_i) \).

Hence, \(J(V(K)) = J(V(\bigcup_{i=1}^{n} S_i)) \).

Therefore \(\text{rad}K = \text{rad}(\bigcup_{i=1}^{n} S_i) \) and by hypothesis \(K = \bigcup_{i=1}^{n} S_i \).

Hence \(K = S_j \) for some \(j \in I \).

Thus \(M \) is Noetherian.

REFERENCES

Received: January, 2011