Abstract

In this paper we introduce the concepts of B_1 near-rings and strong B_1 near-rings. We say that a right near-ring N is a B_1 near-ring if for every $a \in N$, there exists $x \in N^*$ where $N^* = N - \{0\}$, such that $Nax = Nxa$. By the way of generalization, we define N as a strong B_1 near-ring if $Nab = Nba$ for all $a, b \in N$. We discuss some of their properties, obtain a characterisation and also a structure theorem.

Mathematics Subject Classification: 16Y30

Keywords: B_1 near-ring, strong B_1 near-ring, near-field

1 Introduction

Throughout this paper N stands for a right near-ring $(N, +, .)$, with at least two elements and ‘0’ denotes the identity element of the group $(N, +)$. Obviously $0n = 0$ for all $n \in N$. If, in addition, $n0 = 0$ for all $n \in N$ then we say that N is zero symmetric. A subgroup $(M, +)$ of $(N, +)$ is called an N-subgroup of N if $NM \subset M$ and an invariant N-subgroup of N if $MN \subset M$ as well. N is called weak commutative if $abc = acb$ for all $a, b, c \in N$ (Definition 9.4, p.289 of Pilz[4]). N is said to be regular if for every $a \in N$ there exists $b \in N$ such that $a = aba$. An element a is said to be nilpotent if $a^k = 0$ for some positive integer k. N is called nil if every element of N is nilpotent. N is
called integral if N has no non-zero zero divisors. N is called a P_k near-ring if there exists a positive integer k such that $x^k N = xN x$ for all $x \in N$. For any subset A of N, we denote by A^* the set of all non-zero elements of A. In particular $N^* = N - \{0\}$. N is called a strong S_1 near-ring if $N^* = N_{S_1}(a)$ for all $a \in N$ where $N_{S_1}(a) = \{x \in N^*/axa = xa\}$. For basic concepts and terms used but left undefined in this paper we refer to Pilz.

2 Preliminary Results

We freely make use of the following results from [3], [4] and [5] and designate them as $R(1), R(2), \ldots$,

$R(1)$: N has no non-zero nilpotent elements if and only if $a^2 = 0 \Rightarrow a = 0$ for all $a \in N$ (Problem 14, p.9 of [3]).

$R(2)$: N is zero symmetric if and only if every left ideal of N is an N-subgroup of N (Proposition 1.34(b), p.19 of [4]).

$R(3)$: Let N be zero symmetric. Then the following are equivalent:
(i) N has no non-zero nilpotent elements. (ii) N is a subdirect product of integral near-rings (Theorem 9.36, p.302 of [4]).

$R(4)$: If N is a strong S_1 near-ring then N is zero symmetric (Proposition 5.6 of [5]).

$R(5)$: N is a strong S_1 near-ring if and only if $axa = xa$ for all $a, x \in N$ (Theorem 5.8 of [5]).

3 B_1 near-rings

As in [2] a right near-ring N is said to be left bipotent if $Na = Na^2$ for all $a \in N$. Motivated by this we have the following definition.

Definition 3.1 We say that N is a B_1 near-ring if for every $a \in N$, there exists $x \in N^*$ such that $Nax = Nxa$.

Examples 3.2 (a) Every constant near-ring is a B_1 near-ring.
(b) We consider the near-ring $(\mathbb{Z}_4, +, \cdot)$ where $(\mathbb{Z}_4, +)$ is the group of integers modulo ‘4’ and ‘.’ is defined as follows (scheme(4), p.407 of Pilz [4]).

$$
\begin{array}{c|ccc}
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 3 & 0 \\
3 & 0 & 0 & 2 & 0 \\
\end{array}
$$

This is a B_1 near-ring.
Theorem 3.3 Let N be a near-ring. Each of the following statements implies that N is a B_1 near-ring.

(i) N is a zero symmetric nil near-ring.

(ii) N is weak commutative.

(iii) N has identity ‘1’.

(iv) N is a near-field.

Proof (i) Let $a \in N$. If $a = 0$, then for any $x \in N^*$, $Nax = Nxa = N0 = \{0\}$. If $a \in N^*$, since N is nil, there exists a positive integer k such that $a^k = 0$. Put $x = a^{k-1} \neq 0$. Now $Nax = Naa^{k-1} = Naa^k = Na^{k-1}a = Nxa = N0 = \{0\}$. Thus N is a B_1 near-ring.

(ii) Let $a \in N$. For any $x \in N^*$, $y \in Nax \Rightarrow y = nax$ where $n \in N$. Since N is weak commutative, $y = nxa \in Nxa$. Therefore $Nax \subset Nxa$. Similarly $Nxa \subset Nax$ and (ii) follows.

(iii) Follows by taking $x = 1$ in the Definition 3.1.

(iv) Follows from (iii).

Theorem 3.4 Let N be a B_1-near-ring. If N is a strong S_1 near-ring without non-zero zero divisors then the following are true.

(i) Every non-zero N-subgroup of N is an B_1 near-ring.

(ii) Every non-zero ideal of N is an B_1 near-ring.

Proof Since N is a strong S_1 near-ring, by R(4) N is zero symmetric and by R(5) $aba = ba$ for all $a, b \in N$(1).

(i) Let M be an N-subgroup of N and let $m \in M$. If $m = 0$ then for any $x \in N^*$, $Nmx = N0 = \{0\}$ [since N is zero symmetric] = Nxm.

For $m \neq 0$, since N is a B_1 near-ring, there exists $y \in N^*$ such that $Nmy = Nym$(2). Let $n = ym$. It follows that $n \in M^*$. Now $Mmn = Mm(ym) \subset Nm(ym) = (Nmy)m = (Nym)m$ [by (2)] = $N(mym)m$ [by (1)] = $Nm(ym)m \subset M(ym)m = Mnm$. That is $Mmn \subset Mnm$(3). In a similar fashion we get $Mnm \subset Mmn$..............(4). From (3) and (4) we get $Mmn = Mnm$. Consequently M is a B_1 near-ring.

(ii) Since N is zero symmetric, R(2) demands that every ideal of N is an N-subgroup of N and now (ii) follows from (i).

Proposition 3.5 Let N be a B_1 near-ring. Then for every $a \in N$, there exists $x \in N^*$ such that the following are true.

(i) There exists $n \in N$ such that $axa = nax$.

(ii) $Nax \subset Na \cap Nx$.

(iii) If N is Boolean then $Nxa = Nxa$.

(iv) If N is a strong S_1 near-ring then there exists $n \in N$ such that $xa = nax$.
Proof Let \(a \in N \). Since \(N \) is a \(B_1 \) near-ring, there exists \(x \in N^* \) such that \(Nax = Nxa \)(1).

(i) Since \(axa \in Nxa \), by using (1) we get \(axa = nax \) for some \(n \in N \) and (i) follows.

(ii) From (1) we get, \(Nax = Nxa \subset Na \). Obviously \(Nax \subset Nx \). Therefore \(Nax \subset Na \cap Nx \).

(iii) When \(N \) is Boolean, \(Nxa = Nxa^2 = (Nxa)a = (Nax)a \) [by (1)] and (iii) follows.

(iv) Since \(N \) is a strong \(S_1 \) near-ring, the result follows from R(5) and (i).

4 Strong \(B_1 \) near-rings

By generalizing the concept of \(B_1 \) near-rings, we introduce strong \(B_1 \) near-rings. We also study some of its important properties, obtain a simple characterisation under a condition and also a structure theorem.

Definition 4.1 We say that \(N \) is a strong \(B_1 \) near-ring if \(Nab = Nba \) for all \(a, b \in N \).

Examples 4.2 (a) Every commutative near-ring is a strong \(B_1 \) near-ring.

(b) We consider the near-ring \((N, +, .) \), where \((N, +) \) is the Klein’s four group \{ 0, a, b, c \} and ‘.’ is defined as follows (scheme (20), p.408 of Pilz [4])

\[
\begin{array}{c|cccc}
. & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0 \\
a & a & a & a & a \\
b & 0 & a & b & c \\
c & a & 0 & c & b \\
\end{array}
\]

This is a strong \(B_1 \) near-ring.

Proposition 4.3 Every strong \(B_1 \) near-ring is a \(B_1 \) near-ring.

Proof Straight forward.

Remark 4.4 Converse of Proposition 4.3 is not valid. For example we consider the near-ring \((N, +, .) \) where \((N, +) \) is the Klein’s four group \{ 0, a, b, c \} and ‘.’ is defined as follows (scheme(14), p.408 of Pilz [4]).

\[
\begin{array}{c|cccc}
. & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0 \\
a & 0 & a & 0 & c \\
b & 0 & 0 & 0 & 0 \\
c & 0 & a & 0 & c \\
\end{array}
\]
This is a B_1 near-ring. But it is not a strong B_1 near-ring [since $Nac \neq Nca$].

Remark 4.5 It is obvious that the property of N being strong B_1 is preserved under near-ring homomorphisms.

Consequently we have the following Theorem:

Theorem 4.6 Every strong B_1 near-ring is isomorphic to a subdirect product of subdirectly irreducible strong B_1 near-rings.

Proof By Theorem 1.62, p.26 of Pilz [4] we get, N is isomorphic to a subdirect product of subdirectly irreducible near-rings N_i's, say, and each N_i is a homomorphic image of N under the usual projection map π_i. The desired result now follows from Remark 4.5.

Lemma 4.7 If N is a strong B_1 near-ring if and only if for all $a, b, c \in N$, there exists $n \in N$ such that $abc = ncb$.

Proof For the ‘only if’ part, let $a, b, c \in N$. Now $abc \in Nbc$. Since N is a strong B_1 near-ring, $Nbc = Ncb$. Therefore $abc \in Ncb$ and this implies that $abc = ncb$ for some $n \in N$.

For the ‘if’ part, let $a, b, c \in N$. Now $abc \in Nbc$. From our assumption there exists $n \in N$ such that $abc = ncb \in Ncb$. Therefore $Nbc \subset Ncb$. In a similar fashion we get $Ncb \subset Nbc$. Thus N is a strong B_1 near-ring.

Theorem 4.8 Let N be a strong B_1 near-ring. If N is regular then we have the following:

(i) For every $a \in N$, there exists $x \in N$ such that $a = a^2x$.

(ii) N has no non-zero nilpotent elements.

(iii) Any two principal N-subgroups of N commute with each other.

(iv) N is a P_1 near-ring.

(v) N is left bipotent.

Proof Since N is regular, for every $a \in N$, there exists $x \in N$ such that $a = axa$(1).

(i) Since N is a strong B_1 near-ring, Lemma 4.7 guarantees that there exists $n \in N$ such that $axa = nax$(2). From (1) and (2) we get $a = nax$(3). Now $na = n(axa)$ [by (1)] = $(nax)a = aa$ [by (3)] = a^2. That is $a^2 = na$(4). Using (4) in (3) we get $a = a^2x$.

(ii) Let $a \in N$. Suppose $a^2 = 0$. Now (i) demands that there exists $x \in N$ such that $a = a^2x$ and therefore $a = 0$. Now R(1) guarantees that N has no non-zero nilpotent elements.

(iii) First we show that $NaN = Na$ for all $a \in N$. Let $y \in NaN$. Then
\(y = nan' \) for some \(n, n' \in N \)\((5) \). Now Lemma 4.7 demands that \(nan' = zn'a \) for some \(z \in N \)............\((6) \). Combining \((5) \) and \((6) \) we get,
\(y = zn'a = (zn')a \in Na \). Therefore \(NaN \subset Na \)\((7) \). Also from \((1) \) we get \(Na = Naxa = Na(xa) \subset NaN \). That is \(Na \subset NaN \)\((8) \). From \((7) \) and \((8) \) we get \(NaN = Na \)\((9) \). Let \(b, c \in N \). Now \(NbNc = (NbN)c = (Nb)c \) [by \((9) \)] = \(Nbc = Ncb \) [since \(N \) is a strong \(B_1 \) near-ring] = \((Nc)b = (NcN)b \) [by\((9) \)] = \(NcNb \). That is \(NbNc = NcNb \) and \((iii) \) follows.

\((iv) \) For any \(a \in N \), let \(y \in aN \). Then there exists \(z \in N \) such that \(y = az = (axa)z \) [by \((1) \)] = \(a(xaz) \). That is \(y = a(xaz) \)\((10) \). Now Lemma 4.7 demands that there exists \(n \in N \) such that \(xaz = nza \)\((11) \). From \((10) \) and \((11) \) we get \(y = a(nz)a \in aNa \). Therefore \(aNa \subset aNa \)\((12) \).

Obviously \(aNa \subset aN \)\((13) \). From \((12) \) and \((13) \) we get \(aNa = aN \).

Thus \(N \) is a \(P_1 \)-near-ring.

\((v) \) From \((1) \), we get \(Na = Naxa = (Nax)a = (Nxa)a \) [since \(N \) is a strong \(B_1 \) near-ring] = \(Nxa^2 \subset Na^2 \) [since \(Nx \subset N \)]. Therefore \(Na \subset Na^2 \). Consequently \(Na = Na^2 \). Thus \(N \) is left bipotent.

Corollary 4.9 Let \(N \) be a zero symmetric strong \(B_1 \) near-ring. If \(N \) is regular then \(N \) is the subdirect product of integral near-rings.

Proof Let \(N \) be a strong \(B_1 \) near-ring. Since \(N \) is regular, Theorem 4.8(ii) guarantees that, \(N \) has no non-zero nilpotent elements. As \(N \) is zero symmetric, the desired result now follows from R(3).

Theorem 4.10 Let \(N \) be a strong \(B_1 \) near-ring. If \(N \) is Boolean then the following are true.

\((i) \) \(NaNb = Nab \) for all \(a, b \in N \).

\((ii) \) All principal \(N \)-subgroups of \(N \) commute with one another.

\((iii) \) Every ideal of \(N \) is a strong \(B_1 \) near-ring.

\((iv) \) Every \(N \)-subgroup of \(N \) is a strong \(B_1 \) near-ring.

\((v) \) Every \(N \)-subgroup of \(N \) is an invariant \(N \)-subgroup of \(N \).

Proof Since \(N \) is a strong \(B_1 \) near-ring, \(Nab = Nba \)\((1) \).

\((i) \) Let \(a, b \in N \). Since \(N \) is Boolean, \(a = a^2 \in aN \). Thus we have \(a \in aN \Rightarrow Na \subset NaN \Rightarrow Nab \subset NaNb \). For the reverse inclusion \(y \in NaNb \Rightarrow y = nan'b \) for some \(n, n' \in N \)\((2) \). Since \(N \) is a strong \(B_1 \) near ring, by using Lemma 4.7, we get \(nan' = zn'a \) where \(z \in N \). Therefore from \((2) \) we get \(y = zn'ab = (zn')ab \in Nab \). The desired result now follows.

\((ii) \) Let \(a, b \in N \). Now \(NaNb = Nab \) [by \((i) \)] = \(Nba \) [by \((1) \)] = \(NbNa \) [by \((i) \)] and \((ii) \) follows.

\((iii) \) Let \(I \) be any ideal of \(N \). Let \(a, b \in I \). Now \(Iab = Ia^2b \) [since \(N \) is Boolean] = \((Ia)ab \subset I(Nab) = I(Nba) \) [by \((1) \)] \(\subset Iba \). That is \(Iab \subset Iba \). Similarly, we get \(Iba \subset Iab \). Consequently \(I \) is a strong \(B_1 \) near-ring.
(iv) Let M be an N-subgroup of N. Therefore $NM \subseteq M$ \hfill (3). Let $x, y \in M$. Let $z \in Mxy \subseteq Nxy = Nyx$ \hfill (iv) \hfill (4) \hfill (v)

Let $z \in Mxy \subseteq Nxy = Nyx$ \hfill (1) \hfill (iii) \hfill (vi)

Therefore $Mxy \subseteq Myx$ \hfill (2) \hfill (vii) \hfill (vii)

We conclude our discussion with the following characterisation of strong B_1 near-rings.

Theorem 4.11 Let N be a Boolean near-ring. Then N is a strong B_1 near-ring if and only if $Na \cap Nb = Nab$ for all $a, b \in N$.

Proof For the ‘only if’ part, let $y \in Na \cap Nb$. Therefore $y = na = n'b$ for some $n, n' \in N$. Now by Lemma 4.7, there exists $z \in N$ such that $y^2 = (na)(n'b) = (n'an')b = (zn'a)b = (zn')ab \in Nab$. Since N is Boolean, this yields $y \in Nab$. Thus $Na \cap Nb \subseteq Nab$ \hfill (1) \hfill (vi) \hfill (vii)

Since N is a strong B_1 near-ring, $Nab = Nba$. But $Nba \subseteq Na$ and $Nab \subseteq Nb$. Hence $Nab \subseteq Na \cap Nb$ \hfill (2) \hfill (vii)

For the ‘if part’, let $a, b \in N$. Now $Nab = Na \cap Nb = Nb \cap Na = Nba$. Thus N is a strong B_1 near-ring.

References

Received: September, 2010