Essential Subsystems and Weakly Injective Systems

Ahmad Khaksari

Department of Mathematics
University of Payame-Noor
Shiraz P. O. Box 71365-944, Shiraz Iran
a_khaksari@pnu.ac.ir

Abstract. An S-system Q is called injective if for any monomorphism $f:A\to B$ of S-systems A,B and any homomorphism $g:A\to Q$, there exists a homomorphism $h:B\to Q$ such that g=hf. Also , an S-system A is called weakly injective if it is injective relative to all embedding of ideals in S (see[2]). If $\underline{\underline{A}}$ is a non-empty collection of ideals of a semigroup S, then we shall introduce an $\underline{\underline{A}}$ -weakly injective S-system which is generalization of weakly injective S-system and we shall give some characterization of such S-systems .

Mathematics Subject Classification: 20M50

Keywords: S-system, injective, weakly injective, projective, essential ideal

Introduction

Throughout this paper S is a commutative semigroup with identity and zero (Note that to every semigroup S without identity and zero, an identity 1 and a zero 0 can be adjoined by setting 1s = s = s1, 11 = 1 and 0s = 0 = s0,00 = 0 for all $s \in S$.[see[2] page19]). A non-empty set X is called an unitary S-system

A. Khaksari

if there exists a mapping $: X \times S \to X, (x,s) \to xs$ such that (a)x1 = x for every $x \in X$, (b)x(st) = (xs)t for $x \in X, s, t \in S$. A non-empty subset $I \subseteq S$ is called an ideal of semigroup S if $SI \subseteq I$. Now let S be a semigroup and $\underline{\underline{A}}$ a non-empty collection of ideals of S. We say that an S-system X is $\underline{\underline{A}}$ -weakly injective provided that every S-homomorphism $\phi: A \to X$ with A in $\underline{\underline{A}}$ can be lifted to an S-homomorphism $\theta: S \to X$. Recall that if $\underline{\underline{A}}$ is the collection of all ideals in S, then X is called weakly injective (see[2]). Also if $\underline{\underline{A}} = \{I\}$ where I is an ideal of S, then we apply the simple form I-weakly injective. An ideal I is called an essential ideal if $I \cap J \neq \phi$ for every ideal J of S. Recall that S is called reversible if every ideal of S is essential (see [2]).

Definition. The direct sum of two S-systems M and N is the disjoint union $M \sqcup N$ or $M \oplus N$ where S operates on $M \oplus N$ in the obvious way. If N is a subsystem of M, then N is called direct summand of M if there is subsystem K of M such that $K \cap N = \phi$ and $M = K \oplus N$.

Lemma 1. If S is a group and M is an S-system, then every subsystem of M is a summand.

Proof. Let N be a subsystem of M. Then $M \setminus N$ is also a subsystem and $N \cap (M \setminus N) = \phi$. Hence $M = N \oplus (M \setminus N)$.

Theorem 2. Let S be a semigroup with zero, M be the only maximal ideal in S and $M^2 = 0$. Then M is the only essential ideal of S.

Proof. Since M is an $\frac{S}{M}$ -system ([s].m = sm for $s \in S$ and $m \in M$ is well-defined) and $\frac{S}{M}$ is group, every subsystem of M is a summand. That is, if $J \leq M$ then $J \cap (M \setminus N) = \phi$. Hence J is not essential.

Definition. An S-system P is called projective if for any epimorphism $g: L \to M$ of S-systems L, M and any homomorphism $f: P \to M$, there exists an homomorphism $h: P \to L$ such that f = gh.

Theorem 3. Let I be an ideal of S, and $\frac{S}{I}$ be a projective S-system. Then every S-system M with zero is I-weakly injective.

Proof. Since $\frac{S}{I}$ is projective, the short exact sequence $I \xrightarrow{i} S \xrightarrow{\pi} \frac{S}{I}$ right splits. That is, $S \approx I \oplus \frac{S}{I}$. Now let $f: I \to M$ be an S-homomorphism where M is any S-system with zero. We define $h: S \to M$ by

$$h(x) = \begin{cases} f(x) & x \in I \\ 0 & x \in S \setminus I \end{cases}$$

Hence the following diagram

$$\begin{array}{ccc} I & \stackrel{i}{\rightarrow} & S \\ f \downarrow & \swarrow h \\ M \end{array}$$

commutes. Therefore, M is I-weakly injective.

Theorem 4. Let I be an ideal of S and every S-system is I-weakly injective. Then the short exact sequence $I \xrightarrow{i} S \xrightarrow{\pi} \frac{S}{I}$ left splits. That is $S \approx I \times \frac{S}{I}$.

Proof. Since I is I-weakly injective as an S-system, there exists an homomorphism $h: S \to I$ such that the following diagram commutes.

$$I \xrightarrow{i} S \xrightarrow{\pi} \frac{S}{I}$$

$$i \downarrow \swarrow h$$

$$I \qquad .$$

Hence the short exact sequence $I \xrightarrow{i} S \xrightarrow{\pi} \frac{S}{I}$ left splits. That is, $S \simeq I \times \frac{S}{I}$.

Theorem 5. Let S be a semigroup, I an ideal of S and X an S-system with zero. If X is not I weakly injective, then there is a proper essential ideal J_0 containing I such that X is not J_0 weakly injective.

Proof. Since X is not I-weakly injective, there is a homomorphism $f: I \to X$, which does not extend to S. Consider $P = \{(J, h) | J \text{ is an ideal of } S, I \subseteq J \subseteq S, h: J \to X \text{ is a homomorphism extending } f\}.$

Define a relation \leq on P as follows:

$$(J_1, h_1) \leq (J_2, h_2) \longleftrightarrow J_1 \subseteq J_2 \text{ and } h_2|_{J_1} = h_1.$$

It is easy to check that \leq is a partial order on P. By Zorn's Lemma we can find an ideal (J_0, h_0) of S containing I and maximal with respect to the property that h_0 extends to f.

Of course X is not J_0 weakly-injective. Also J_0 is essential in S for if $J_0 \cap K = \phi$ for some ideal K of S, then f trivially extends to $J_0 \oplus K$. That is a contradiction with maximality of J_0 .

Theorem 6. Let S be a semigroup and let $\underline{\underline{A}}$ be the collection of proper essential ideals of S. The every $\underline{\underline{A}}$ -weakly injective S-system with zero is weakly injective.

Proof. Let I be an ideal of S, X an S-system with zero, and $f: I \to X$ be a homomorphism. By Zorn's Lemma we can find an ideal J_0 of S containing I and maximal with respect to the property that f extends to J_0 . That is there exists $\bar{f}: J_0 \to X$, such that $\bar{f}|_I = f$ and J_0 is maximal. Also J_0 is essential in S for if $J_0 \cap K = \phi$ for some ideal K of S, then f trivially extends to $J_0 \oplus K$, that is a contradiction with maximality of J_0 . Since J_0 is essential we can lift $\bar{f}: J_0 \to X$ to S (by assumption). Hence X is I-weakly injective.

Corollary 7. Let S be a semigroup with zero. Then the set of proper essential ideals of S is a test set for weakly injectivity, of S-systems with zero.

Proof. Let I be an ideal of S, and $f: I \to S$ be a homomorphism. Since zero ideal belongs to $\sum = \{J | J \text{ is an ideal and } J \cap I = \{0\}\}$, by Zorn's Lemma there exists J_0 maximal for \sum . We define $g: I \oplus J_0 \to M$. Where M is an S-system with zero as follow:

$$g(x) = \begin{cases} f(x) & x \in I \\ 0 & x \in J_0 \end{cases}.$$

Since $I \oplus J_0$ is essential, there exists $h: S \to M$, such that the following diagram commutes,

$$I \to I \oplus J_0 \to S$$
$$f \downarrow \swarrow g$$

Hence M is I-weakly injective.

References

- [1] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York 1992.
- [2] M. Kilp, U. Knaure and A. V. Mikhalev, Monoids Acts and Categories, Walter de Grugter. Berlin. New York 2000.

Received: June, 2010