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Abstract

In this note, we assume that R is an integral domain with quotient
field K. We introduce the concept of square root closed domain and
then we study when I−1 = { x ∈ K | xI ⊆ R } is a ring, for a nonzero
ideal I of the square root closed domain.

Mathematics Subject Classification: 13B22, 13G05

Keywords: Square root closed domain; Strongly prime ideal; Dual of an

ideal

1 Introduction

Throughout this paper, R will be an integral domain, K will denote its quotient

field and I will be a nonzero ideal of R. The R-submodule J of K is called

fractional ideal if there exists an element a ∈ R such that aJ ⊆ R. For a

nonzero fractional ideal J of R, the fractional ideal (R : J) = { x ∈ K | xJ ⊆
R } is called the dual of J and we show with J−1. In [7], Huckaba and Papick

studied the question of when I−1 is a ring, and this question has received

further attention in [1-6].

We note that while (I : I) is always an overring of R, I−1 need not be a ring

at all. Our purpose in this paper is to determine when I−1 is a ring, where I

is a nonzero ideal of the square root closed domain. But we must begin with

the following definition:

Definition 1. An integral domain R is called square root closed domain,

whenever for every x ∈ K, if x2 ∈ R then x ∈ R.
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If R is an integrally closed domain, then R is a square root closed domain,

but Z[i
√

3] is a square root closed domain which is not integrally closed.

Proposition 2. Let R be a square root closed domain and S be a multiplica-

tively closed subset of R. Then S−1R is a square root closed domain.

Proof. Let x ∈ K and x2 ∈ S−1R. There exist a ∈ R and s ∈ S such that

x2 =
a

s
. Thus sx2 = a ∈ R and so (sx)2 = sa ∈ R. Since R is a square root

closed domain, then sx ∈ R. Therefore x =
sx

s
∈ S−1R. �

Theorem 3. Let R be a square root closed domain and I be an ideal of R.

Then

(
√

I :
√

I) = { x ∈ K | xn ∈ (R : I) for all n ≥ 1 }.

Proof. Suppose that x ∈ (
√

I :
√

I). Thus xn ∈ (
√

I :
√

I) for every n ≥ 1.

Hence xnI ⊆ xn
√

I ⊆ √
I ⊆ R and consequently xn ∈ (R : I) for every n ≥ 1.

Conversely, let x ∈ K and xn ∈ (R : I) for all n ≥ 1. If t ∈ √
I, then

tm ∈ I for some m ≥ 1. Hence xntm ∈ R for each n ≥ 1. Thus (xt)m ∈ R.

We can assume that m = 2k for some k ≥ 1. Therefore xt ∈ R, because R is a

square root closed domain. On the other hand, xntm ∈ R for all n ≥ 1 implies

that (xt)m+1 = (xm+1tm)t ∈ √
I. Hence xt ∈ √

I. Therefore x ∈ (
√

I :
√

I).

�

Proposition 4. For every ideal I of the square root closed domain R, the

following statements are satisfied:

1. (
√

I :
√

I) ⊆ I−1.

2. (
√

I :
√

I) is a square root closed domain.

3. I−1 is a ring if and only if I−1 = (
√

I :
√

I).

4. If I−1 is a ring, then I−1 is a square root closed domain.

5. If I is a radical ideal, then (I : I) is a square root closed domain. Fur-

thermore, I−1 = (I : I) if and only if I−1 is a ring.

Proof. 1. It is trivial by Theorem 3.

2. Let x2 ∈ (
√

I :
√

I), for x ∈ K. Thus by Theorem 3, x2n ∈ I−1 for every

n ≥ 1. Hence tx2n ∈ R for each t ∈ I and n ≥ 1. Then (txn)2 ∈ R and so

txn ∈ R, for all n ≥ 1. Therefore xn ∈ (R : I) for every n ≥ 1 and consequently

x ∈ (
√

I :
√

I).
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3. Suppose that I−1 is a ring and x ∈ I−1. Then xn ∈ I−1 for all n ≥ 1, and so

x ∈ (
√

I :
√

I), by Theorem 3. Therefore I−1 ⊆ (
√

I :
√

I) and consequently

I−1 = (
√

I :
√

I) by 1. The other implication is clear.

4 and 5. It is obvious, by 2 and 3. �

Corollary 5. Let R be a square root closed domain and I and J be ideals of

R. Then the following statements are hold:

1. (
√

I :
√

I) is the largest subring of (R : I).

2. If I ⊆ J , then (
√

J :
√

J) ⊆ (
√

I :
√

I).

3. If I−1 is a ring, then
√

I is an ideal of I−1.

Proof. 1. It is clear, by 1 and 3 of Proposition 4.

2. Let x ∈ (
√

J :
√

J). Thus xn ∈ (R : J) for every n ≥ 1, by Theorem 3.

I ⊆ J implies that (R : J) ⊆ (R : I), and so xn ∈ (R : I) for all n. Therefore

x ∈ (
√

I :
√

I).

3. It follows from 3 of Proposition 4. �

Proposition 6. Let R be a square root closed domain and I ⊆ J be ideals of

R with the same radical. If I−1 is a ring, then I−1 = J−1 = (
√

I :
√

I).

Proof. By 1 and 3 of Proposition 4, we have

I−1 = (
√

I :
√

I) = (
√

J :
√

J) ⊆ (R : J) = J−1 ⊆ I−1. �

If I is an ideal of integral domain R, then In ⊆ I and
√

In =
√

I, for each

n ≥ 1. Therefore we have the following:

Corollary 7. For every ideal I of the square root closed domain R, if (R : In)

is a ring, for some n > 1, then I−1 is a ring. �

We recall that, a prime ideal P of the integral domain R is said to be

strongly prime if whenever xy ∈ P , for x, y ∈ K, then either x ∈ P or y ∈ P .

Proposition 8. Let R be an integral domain and I be an ideal of R such that

I−1 is a ring. If P is a strongly prime ideal of R containing I, then I−1 is a

square root closed domain.

Proof. Let x2 ∈ I−1, for x ∈ K. Then x2I ⊆ R. Hence (xI)2 = (x2I)I ⊆ I ⊆
P . Thus xI ⊆ P , because P is a strongly prime. Therefore, x ∈ (P : I) ⊆ (R :
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I) = I−1. �

We note that, if I is an ideal of the integral domain R and P is a minimal

prime ideal of I, then
√

IRP =
√

PRP = PRP . For every element a ∈ P , we

have
a

1
∈ PRP =

√
IRP which implies that

an

1
∈ IRP , for some integer n.

Hence there exists an element s ∈ R \ P such that san ∈ I and so sa ∈ √
I.

Therefore, we conclude that for every a ∈ P there is an element s ∈ R \ P

such that sa ∈ √
I.

An element a ∈ K is almost integral over R, if there exists a nonzero

element r ∈ R such that ran ∈ R, for all n ≥ 1. We say that R is completely

integrally closed, if a ∈ K is almost integral over R, then a ∈ R.

Lemma 9. Let R be an completely integrally closed domain and I be an ideal

of R. If P is a minimal prime ideal of I, then (
√

I :
√

I) ⊆ (P : P ).

Proof. Let x ∈ (
√

I :
√

I). For each a ∈ P , by above note, sa ∈ √
I, for

some s ∈ R \ P . Then saxn ∈ √
I, for all n ≥ 1, because xn ∈ (

√
I :

√
I).

Hence s(ax)n = an−1(saxn) ∈ √
I, for each n ≥ 1 and so ax ∈ R, because R is

completely integrally closed. Since sax ∈ √
I ⊆ P and s �∈ P , then ax ∈ P , it

follows that x ∈ (P : P ). �

Proposition 10. Let R be a square root closed domain, I be an ideal of R

and P is a minimal prime ideal of I. If R is also completely integrally closed,

then the following statements are hold:

1. (
√

I :
√

I) = (P : P ).

2. If I−1 is a ring, then I−1 = P−1 = (P : P ).

Proof. 1. It follows from 2 of Corollary 5 and Lemma 9.

2. Since I ⊆ P , then P−1 ⊆ I−1. On the other hand, I−1 is a ring, then

I−1 = (
√

I :
√

I), by 3 of Proposition 4. Therefore by 1, we have

I−1 = (
√

I :
√

I) = (P : P ) ⊆ P−1 ⊆ I−1. �

For every ideal I of the integral domain R, we have

(R : I) ⊆ (R : I2) ⊆ (R : I3) ⊆ · · · ⊆ (R : In) ⊆ · · ·
Therefore we can state the following result:

Proposition 11. Let R be a square root closed domain and I be an ideal of

R. If (R : In+1) = (R : In), for some n ≥ 1, then
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1. (R : Im) = (R : In), for each m ≥ n.

2. I−1 is a ring.

3. (R : I2) = (R : I).

Proof. 1. We can use induction on m ≥ n and the equality

(R : Im+1) = ((R : Im) : I) = ((R : In) : I) = (R : In+1) = (R : In).

2. We first show that (R : In) is a ring. For every element x, y ∈ (R : In), we

have xIn ⊆ R and yIn ⊆ R. Thus xyI2n ⊆ R and so xy ∈ (R : I2n) = (R : In),

by 1. Since (R : In) is an additive subgroup, (R : In) is a subring of K. It

follows from Corollary 7, that I−1 is ring.

3. It is clear if n = 1. On the otherwise, In ⊆ I2 and so (R : I2) is a ring,

by Corollary 7. Now, for every element x ∈ (R : I2), x2 ∈ (R : I2). Then

(xI)2 = x2I2 ⊆ R. Hence xI ⊆ R, because R is a square root closed domain.

Therefore x ∈ (R : I). �

Corollary 12. For every ideal I of the square root closed domain R, the

following statements are hold:

1. If I−1 is not ring, then we have

R ⊂ (R : I) ⊂ (R : I2) ⊂ (R : I3) ⊂ · · · ⊂ (R : In) ⊂ · · ·

2. If In+1 = In, for some n ≥ 1, then I−1 is a ring.

3. If R is Noetherian and
∞⋂

n=1

In �= 0, then I−1 is a ring. �
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