Upper Rank of Full Transformation Semigroups on a Finite Set

Osman Kelelcki

Department of Mathematics, Çukurova University
Adana, Turkey
okelekci@cu.edu.tr

Abstract
In this paper we found a lower bound for the upper rank $r_4(T_n)$ of full transformation semigroup T_n on the set X_n.

Mathematics Subject Classification: 20M20

Keywords: transformation semigroup, independent subset, rank.

1 Introduction

The full transformation semigroup T_X consists of all self maps of the set X. We consider the finite set $X_n = \{1, 2, \ldots, n\}$ ordered in the standard way and the full transformation semigroup T_n on X_n. The full transformation semigroup T_n and some special subsemigroups of T_n have been much studied over the last fifty years (see [3], [8], [9]). For any semigroup S, we normally define the rank of S by,

$$\text{rank}(S) = \min\{|U| : U \subseteq S \text{ and } \langle U \rangle = S\}.$$

Rank of the full transformation semigroup T_n on X_n has been studied in [1] and [2]. Let S be a finite semigroup. A subset U of S is called independent if, for every u in U, the element u does not belong to the semigroup $\langle U \setminus \{u\} \rangle$ generated by the remaining elements of U. Recently, Howie and Ribeiro introduced five different type of rank for semigroups, in [5] and [6]. These ranks $r_1(S), r_2(S), r_3(S), r_4(S)$ and $r_5(S)$, are defined as follows:

- $r_1(S) = \max\{k : \text{every subset } U \text{ of } S \text{ cardinality } k \text{ is independent}\}$
- $r_2(S) = \min\{k : \text{there exists a subset } U \text{ of } S \text{ cardinality } k \text{ such that } U \text{ generates } S\}$
• \(r_3(S) = \max \{ k : \text{there exists a subset } U \text{ of } S \text{ cardinality } k \text{ which is independent and generates } S \} \)

• \(r_4(S) = \max \{ k : \text{there exists a subset } U \text{ of } S \text{ cardinality } k \text{ which is independent} \} \)

• \(r_5(S) = \min \{ k : \text{every subset } U \text{ of } S \text{ cardinality } k \text{ generates } S \} \)

It is easily seen that \(r_1(S) \leq r_2(S) \leq r_3(S) \leq r_4(S) \leq r_5(S) \), and for convenience, in [6], the terminology has been used as \(r_1(S) \) is small rank, \(r_2(S) \) is lower rank, \(r_3(S) \) is intermediate rank, \(r_4(S) \) is upper rank and \(r_5(S) \) is large rank. Here, the lower rank is what is normally called the rank, which has been extensively studied.

It is proved that

\[
\begin{align*}
 r_5(T_n) &= n^n - \frac{n!}{2} + 1 \\
 r_5(B(G, n)) &= (n^2 - n + 1)|G| + 2
\end{align*}
\]

where \(B(G, n) \) is the Brandt semigroup for an finite group \(G \) (see[6]). The upper rank \(r_4(S) \) is calculated when \(S \) is a monogenic semigroup and aperiodic Brandt semigroup. The intermediate rank \(r_3(S) \) is also calculated when \(S \) is a rectangular band and aperiodic Brandt semigroup in [5].

The notion of upper rank turns out to be quite difficult to handle, especially for \(T_n \). It is relatively easy to obtain a lower bound for \(r_4 \), simply by producing an independent set in \(S \), but is usually much harder to show that \(S \) contains no larger independent set.

The main goal of this study is to find a lower bound for the upper rank of full transformation semigroups. For unexplained terms in semigroup theory, see [4] and [7].

2 Preliminaries

Let \(\alpha \in T_n \) and let \(x_0 \in X_n \) be any element. If \(x\alpha = x_0 \) for every element \(x \in X_n \), then \(\alpha \) is called a constant transformation. The image, Defect set, defect and kernel of \(\alpha \) are defined by

\[
\begin{align*}
 \text{im} (\alpha) &= \{ x\alpha : x \in X_n \} \\
 \text{Def} (\alpha) &= X_n \setminus \text{im} (\alpha) \\
 \text{def} (\alpha) &= |\text{Def} (\alpha)| \\
 \text{ker}(\alpha) &= \{ (x, y) \in X_n \times X_n : x\alpha = y\alpha \}
\end{align*}
\]

respectively. Now we state a well known lemma which will be useful throughout this paper.
Lemma 2.1 For any $\alpha, \beta \in T_n$,

(i) $\ker(\alpha) \subseteq \ker(\alpha\beta)$

(ii) $\text{im}(\alpha\beta) \subseteq \text{im}(\beta)$.

The idea behind Green’s equivalences is to sort out the elements of a semi-group. Each D-class in a semigroup S is a union of L-classes and R-classes. The intersection of an L-class and an R-class is either empty or is an H-class. Hence it is convenient to visualize a D-class as an eggbox, in which each row represents an R-class, each column represents an L-class and each cell represents an H-class. (It is of course possible for the eggbox to contain a single row or a single column of cells, or even to contains only one cell.) One can then analysis a semigroup, by finding these uniform blocks and describing connections between them. For $\alpha, \beta \in T_n$, these relations defined as:

\[
\begin{align*}
(\alpha, \beta) \in L & \iff \text{im}(\alpha) = \text{im}(\beta) \\
(\alpha, \beta) \in R & \iff \ker(\alpha) = \ker(\beta) \\
(\alpha, \beta) \in H & \iff \text{im}(\alpha) = \text{im}(\beta) \text{ and } \ker(\alpha) = \ker(\beta) \\
(\alpha, \beta) \in D & \iff |\text{im}(\alpha)| = |\text{im}(\beta)|.
\end{align*}
\]

It is well known that $\alpha \in T_n$ is an idempotent element if and only if the restriction of α to $\text{im}(\alpha)$ is the identity map on $\text{im}(\alpha)$. If e is an idempotent in a semigroup S, then H_e is a subgroup of S. No H-class in S can contain more than one idempotent. We denote the D-Green class of all self maps of defect r by D_{n-r} ($0 \leq r \leq n-1$). Let D_k be a D-class then it is clear that

- D_k has $\binom{n}{k}$ distinct L-classes
- D_k has $S(n,k)$ distinct R-classes
- D_k has $S(n,k)\binom{n}{k}$ distinct H-classes
- Each H-class has $k!$ elements
- Each L-class has k^{n-k} group H-classes.

Here $S(n,k)$, for $1 < k \leq n$ defined by

\[
S(n,k) = \frac{1}{k!} \left(\sum_{r=0}^{k} (-1)^r \binom{k}{r} (k-r)^n \right),
\]

is Stirling number of second kind which satisfies recurrence relations below:

$S(1,1) = S(n,n) = 1$ and $S(n+1,k) = S(n,k-1) + kS(n,k)$.

3 The upper rank of T_n

Theorem 3.1 $r_h(T_n) \geq |A| = [S(n, n - 1) - (n - 1)](n - 1)! + n + 1.$

Proof. First we construct an independent subset of T_n. For $X_n = \{1, \ldots, n\}$ and $Y = X_n \setminus \{i\}, i = 1, \ldots, n$ we define a set denoted by A. Consider the \mathcal{L}-class L_Y in D_{n-1}. The set A contains only idempotents of group \mathcal{H}-classes in L_Y and all elements of non-group \mathcal{H}-classes in L_Y, and also α, is the constant transformation such that $x\alpha = i$ for all $x \in X_n$ and β, is the identity map of T_n.

It is clear that the cardinality of A is

$$[S(n, n - 1) - (n - 1)](n - 1)! + n - 1 + 1 + 1.$$

Here $S(n, n - 1)$ is the number of \mathcal{R}-classes in D_{n-1}, $(n - 1)$ is the number of group \mathcal{H}-classes and $(n - 1)!$ is the cardinality of each of the \mathcal{H}-classes.

A is an independent subset of T_n. Since $\alpha \notin \langle A \setminus \{\alpha\}\rangle$ and $\beta \notin \langle A \setminus \{\beta\}\rangle$. So, without loss of generality we may assume that $A = A \setminus \{\alpha, \beta\}$. For any $\gamma \in A$, it is enough to show that $\gamma \notin \langle A \setminus \{\gamma\}\rangle$. Now suppose that $\gamma \in \langle A \setminus \{\gamma\}\rangle$. Then there exist $\delta_1, \delta_2, \ldots, \delta_k \in A \setminus \{\gamma\}$ such that $\delta_1\delta_2\ldots\delta_k = \gamma$. Since $\delta_1, \delta_2, \ldots, \delta_k, \gamma \in D_{n-1}$, we find from Lemma 2.1

$$\ker(\delta_1) = \ker(\gamma) \text{ and } \text{im}(\gamma) = \text{im}(\delta_k).$$

Especially, since $\delta_1, \delta_2, \ldots, \delta_k, \gamma \in L_Y$ then

$$\text{im}(\gamma) = \text{im}(\delta_j), j = 1, 2, \ldots, k.$$ (2)

From Equation (1) and (2), $\ker(\gamma) = \ker(\delta_1)$ and $\text{im}(\gamma) = \text{im}(\delta_1)$. That is, γ and δ_1 are in the same \mathcal{H}-class.

(i) if γ is an idempotent, δ_1 is not in the H_γ-class. Because this contradicts with the definition of A. So there is no element in $A \setminus \{\gamma\}$ such that $\ker(\delta_1) = \ker(\gamma)$. Hence $\gamma \notin \langle A \setminus \{\gamma\}\rangle$.

(ii) if γ is not an idempotent, since each non-group \mathcal{H}-class is not closure (indeed is an independent subset) and idempotents of group \mathcal{H}-classes are right identity of the same \mathcal{L}-classes then $|\text{im}(\gamma)| = |\text{im}(\delta_1\delta_2\ldots\delta_k)| \leq n - 2$. Since $\gamma \in D_{n-1}$, this is in contradiction with $|\text{im}(\gamma)| = n - 1$. So $\gamma \notin \langle A \setminus \{\gamma\}\rangle$.

\blacksquare
Example 3.2 For $n = 3$, T_3 has 3 \mathcal{D}-Green classes like below:

\[
\begin{array}{cccccc}
D_3 & \begin{pmatrix} 123 \\ 123 \end{pmatrix} & \begin{pmatrix} 123 \\ 132 \end{pmatrix} & \begin{pmatrix} 123 \\ 213 \end{pmatrix} & \begin{pmatrix} 123 \\ 231 \end{pmatrix} & \begin{pmatrix} 123 \\ 312 \end{pmatrix} & \begin{pmatrix} 123 \\ 321 \end{pmatrix} \\
D_2 & \begin{pmatrix} 123 \\ 122 \end{pmatrix} & \begin{pmatrix} 123 \\ 211 \end{pmatrix} & \begin{pmatrix} 123 \\ 133 \end{pmatrix} & \begin{pmatrix} 123 \\ 311 \end{pmatrix} & \begin{pmatrix} 123 \\ 232 \end{pmatrix} & \begin{pmatrix} 123 \\ 323 \end{pmatrix} \\
D_1 & \begin{pmatrix} 123 \\ 111 \end{pmatrix} & \begin{pmatrix} 123 \\ 222 \end{pmatrix} & \begin{pmatrix} 123 \\ 333 \end{pmatrix}
\end{array}
\]

$X_3 = \{1, 2, 3\}$ and let $i = 1$. Since $Y = \{2, 3\}$ consider the $L_Y = L_{\{2,3\}}$ class in top \mathcal{D}-class D_2. For A, we take idempotents of group \mathcal{H}-classes and all elements of non-group \mathcal{H}-classes in this L class. Also α is constant transformation in D_1 and β is identity map in D_3. Briefly the set A consists of bold elements on the table above.

\[
A = \left\{ \begin{pmatrix} 123 \\ 123 \end{pmatrix}, \begin{pmatrix} 123 \\ 232 \end{pmatrix}, \begin{pmatrix} 123 \\ 323 \end{pmatrix}, \begin{pmatrix} 123 \\ 332 \end{pmatrix}, \begin{pmatrix} 123 \\ 111 \end{pmatrix} \right\}
\]

A is an independent set of T_3. The cardinality of A is

\[
|A| = \left[S(3, 2) - (3 - 1) \right] (3 - 1)! + 2 + 1 + 1 = 6.
\]

Hence $r_4(T_3) \geq 6$.

Remark 3.3 In [6], Howie and Riberio proved that the large rank of T_n is $n^n - (1/2)n! + 1$. For T_3, $r_5(T_3) = 3^3 - (1/2)3! + 1 = 25$. Since $r_1(S) \leq r_2(S) \leq r_3(S) \leq r_4(S) \leq r_5(S)$ and $6 \leq r_4(T_3) \leq 25 = r_5(T_3)$, our lower bound is true.

Thus all five ranks of T_n, $r_1(T_n) = 1 \leq r_2(T_n) = 3 \leq r_3(T_n) = 3 \leq r_4(T_n) = 6 \leq r_5(T_n) = 25$ were calculated.

Corollary 3.4 The independent set of T_n is not unique. There are $\binom{n}{n-1}$ independent sets. Here $\binom{n}{n-1}$ is the number of distinct \mathcal{L}-classes in D_{n-1}

In our example, there are $\binom{3}{3-1} = 3$ independent sets of T_3. These are below for $L_{1,2}$, $L_{1,3}$ and $L_{2,3}$ respectively.

- $A_1 = \left\{ \begin{pmatrix} 123 \\ 123 \end{pmatrix}, \begin{pmatrix} 123 \\ 122 \end{pmatrix}, \begin{pmatrix} 123 \\ 121 \end{pmatrix}, \begin{pmatrix} 123 \\ 112 \end{pmatrix}, \begin{pmatrix} 123 \\ 221 \end{pmatrix}, \begin{pmatrix} 123 \\ 333 \end{pmatrix} \right\}$
• $A_2 = \left\{ \begin{pmatrix} 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \end{pmatrix}, \begin{pmatrix} 133 \\ 133 \\ 133 \\ 131 \\ 313 \\ 113 \end{pmatrix}, \begin{pmatrix} 113 \\ 113 \\ 113 \\ 113 \\ 222 \\ 222 \end{pmatrix} \right\}$

• $A_3 = \left\{ \begin{pmatrix} 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \end{pmatrix}, \begin{pmatrix} 233 \\ 233 \\ 233 \\ 322 \\ 323 \\ 223 \end{pmatrix}, \begin{pmatrix} 323 \\ 323 \\ 323 \\ 223 \\ 111 \\ 111 \end{pmatrix} \right\}$

References

Received: August, 2011