Cofinitely δ_M–Supplemented and Cofinitely δ_M–Semiperfect Modules

Ali Omer Alattass

Department of mathematics, Faculty of Science
Hadramout University of Science and Technology
P.O. Box 50663, Mukalla, Yemen
alattassali@yahoo.com

Abstract

Let M be a module over a ring R. In this paper cofinitely δ_M-supplemented, \oplus-cofinitely δ_M-supplemented, and cofinitely δ_M-semiperfect modules are defined and several properties of these modules are investigated.

Mathematics Subject Classification: 16D80, 16D90, 16D99

Keywords: δ_M-small submodule, projective δ_M-cover, cofinitely δ_M-supplemented module, cofinitely δ_M-semiperfect module

1 Introduction

Throughout this article, R denotes an associative ring with unity and modules M are unitary right R-modules. $\text{Mod} - R$ denotes the category of all right R-modules. Let M be any R-module. Any R-module N is M-generated (or generated by M) if it is a homomorphic image of a direct sum of copies of M. An R module N is said to be subgenerated by M if N is isomorphic to a submodule of an M-generated module. We denote by $\sigma[M]$ the full subcategory of the right R-modules whose objects are all right R-modules subgenerated by M. Any module $N \in \sigma[M]$ is said to be M-singular if $N \cong L/K$ for some $L \in \sigma[M]$ and K is essential in L. The class of all M-singular modules is closed under submodules, homomorphic images, and direct sums. We denote by $\text{Add} M$ the full subcategory $\sigma[M]$ whose objects are the direct summands of direct sums of copies of M. In case of $M = R$, $\sigma[R]=\text{Mod} - R$ and $\text{Add} R$ is just the class of all projective R-modules. For any set I, we write $M^{(I)}$ for the direct sum of I copies of M. The concept of small submodule has been generalized to δ-small submodule by Zhou[15]. Zhou called a submodule N of a module
M is δ-small in M (notation $N \leq_\delta M$) if, whenever $N + X = M$ with M/X singular, we have $X = M$. Özcan and Alkan consider this notation in $\sigma[M]$. For a module N in $\sigma[M]$ Özcan and Alkan [8] call a submodule L of N is δ-

M or δ_M-small submodule, written $L \triangleleft_{\delta_M} N$, in N if $L + K \neq N$ for any proper submodule K of N with N/K M-singular. Clearly, if L is δ-small, then L is a δ_M-small submodule. Hence δ_M-small submodules are the generalization of δ-small submodules in the category $\text{Mod} - R$. Also Özcan and Alkan [8] consider the following submodules of a module N in $\sigma[M]$ (see also Zhou[15]), $\delta_M(N) = \cap\{K \leq N : N/K$ is $M -$ singular simple $\}$.

We collect basic properties of δ_M-small submodules in the following lemma which is taken from [8] and [11].

Lemma 1.1 Let $N \in \sigma[M]$.

1. For modules K and L with, $K \leq L \leq N$, we have $L \triangleleft_{\delta_M} N$ if and only if $K \triangleleft_{\delta_M} N$ and $L/K \triangleleft_{\delta_M} N/K$.

2. For submodules K and L of N, $K + L \triangleleft_{\delta_M} N$ if and only if $K \triangleleft_{\delta_M} N$ and $L \triangleleft_{\delta_M} N$.

3. If $K \triangleleft_{\delta_M} N$ and $f : N \rightarrow L$ is a homomorphism in $\sigma[M]$, then $f(K) \triangleleft_{\delta_M} L$. In particular, if $K \triangleleft_{\delta_M} L$ and $L \leq N$, then $K \triangleleft_{\delta_M} N$.

4. If $K \leq L \leq M$ and $K \triangleleft_{\delta_M} N$ then $K \triangleleft_{\delta_M} L$.

5. $\delta_M(N) = \sum\{L \leq N : L \triangleleft_{\delta_M} N\}$.

6. Let K be a submodule of a module N in $\sigma[M]$. Then $K \triangleleft_{\delta_M} N$ if and only if $N = X \oplus Y$ for a projective semisimple submodule Y in $\sigma[M]$ with $Y \leq K$ whenever $X + K = N$.

Let L,K be two submodules of M. Following Kosan [7], L is called a δ-supplement of K in M if $M = L + K$ and $L \cap K \leq L$. L is called a δ-supplement submodule of M if L is a δ-supplement of some submodule of M. M is called a δ-supplemented module if every submodule of M has a δ-supplement in M. A submodule L of M has an ample δ-supplement in M if every submodule K of M with $M = L + K$ contains a δ-supplement of L in M. A module M is called amply δ-supplemented if every submodule of M has an ample δ-supplement in M. These modules are useful in characterizing δ-semiperfect ring. In [15] an epimorphism $f : P \rightarrow M$ is called a projective δ-cover of M if P is projective and $\ker(f) \triangleleft_{\delta} P$. A ring R is called a δ-semiperfect module if every simple R-module has a projective δ-cover. Following [7] an R-module M is called δ-semiperfect if, for every submodule K of M, there exists a decomposition $M = A \oplus B$ such that A is a projective module with $A \leq K$ and $B \cap K \leq M$. Now, let $N \in \sigma[M]$ and $L,K \leq N$. L is called a δ_M-supplement of K in N if $N = K + L$ and $K \cap L \triangleleft_{\delta_M} L$. L is called a δ_M-supplement submodule of N if L is a δ_M-supplement of some submodule of N. A submodule L of N has an ample δ_M-supplement in N if every submodule K of N such that $N = L + K$ contains a δ_M-supplement of
Cofinitely δ_M-supplemented and cofinitely δ_M-semiperfect modules

L in N. On the other hand N is called (amply, resp.) δ_M-supplemented if every submodule of N has a (an ample, resp.) δ_M-supplement in N.

A submodule K of a module M is called cofinite in M if M/K is finitely generated. By a module M is called cofinitely (amply resp.) δ-supplemented if every cofinite module in M has a (an ample resp.) δ-supplement M is called \oplus-cofinitely δ-supplemented if every cofinite submodule of M has a δ-supplement which is a direct summand of M. If every factor module of M by a cofinite submodule has a projective δ-cover. Cofinitely-δ-supplemented modules and cofinitely δ-semiperfect have been studied by K. Al-TKhman[3], L. V. Thuyet, M. T. Kosan and T.C. Quynh [10] and Y. Wang and D. Wu [13]; our main tool in this papers is to consider these concepts in $\sigma[M]$ and investigate their properties by the help of the techniques used in these papers.

For the other definitions and notations in this paper we refer to Anderson and Fuller [4] and Wisbauer [14]. The following Theorem has been proved by Alattass in [1].

Theorem 1.2 Let N be in $\sigma[M]$ and $K, L, X \leq N$ such that $X \ll_{\delta_M} N$.

1. If K is a δ_M-supplement of L in N, then K is a δ_M-supplement of $L + X$ in N.
2. If K is a δ_M-supplement of $L + X$ in N, then N has a direct summand Y which is semisimple, projective in $\sigma[M]$ and $K + Y$ is a δ_M-supplement of L in N.

2 Cofinitely δ_M-Supplemented Modules.

In this section we define and study cofinitely δ_M-supplemented modules.

Definition 2.1 A module N in $\sigma[M]$ is called cofinitely δ_M-supplemented, briefly, $\text{cof} \cdot \delta_M$-supplemented, if each cofinite submodule of N has a δ_M-supplement in N. N is called \oplus-cofinitely-δ_M-supplemented, briefly, \oplus-cof-δ_M-supplemented, if each cofinite submodule of N has a δ_M-supplement in N which is a direct summand of N.

It is clear from the definitions, that a $\delta_M(\oplus-\delta_M)$-supplemented module is $\text{cof} \cdot \delta_M(\oplus \text{cof} \cdot \delta_M)$-supplemented. The converse is true if the module is finitely generated.

Theorem 2.2 Every factor module of a $\text{cof} \cdot \delta_M$-supplemented module is $\text{cof} \cdot \delta_M$-supplemented and hence homomorphic images and direct summands of $\text{cof} \cdot \delta_M$-supplemented modules are $\text{cof} \cdot \delta_M$-supplemented.

Proof. Let $N \in \sigma[M]$ be $\text{cof} \cdot \delta_M$-supplemented, and let $K \leq N$. If L/K is a cofinite submodule of N/K, then L is cofinite in N. Hence, since N is $\text{cof} \cdot \delta_M$-supplemented, there exists a submodule X of N such that $N = L + X$ and
\[L \cap X \leq_{\delta_M} X. \] Then \(N/K = L/K + (X + K)/K. \) Furthermore \(L/K \cap (X + K)/K = (L \cap (X + K))/K = (K + (L \cap X))/K \leq_{\delta_M} (K + X)/K. \) Thus \(N/K \) is \(\text{cof}-\delta_M\)-supplemented.

Next we show that arbitrary sum of submodules of a module in \(\sigma[M] \) is \(\text{cof}-\delta_M\)-supplemented if each submodule is \(\text{cof} - \delta_M\)-supplemented. To do this we need the following Lemma.

Lemma 2.3 Let \(N \) be in \(\sigma[M] \) and \(K, L \leq N. \) If \(K \) is \(\text{cof}-\delta_M\)-supplemented, \(L \) is cofinite in \(N \) and \(K + L \) has \(\delta_M\)-supplement \(X \) in \(N \), then \(K \cap (X + L) \) has \(\delta_M\)-supplement \(Y \) in \(K \) such that \(X + Y \) is a \(\delta_M\)-supplement of \(L \) in \(N \).

Proof. Since \(K/K \cap (X + L) \cong (N/L)/(X + L)/L, K/K \cap (X + L) \) is finitely generated. Hence \(K \cap (X + L) \) is cofinite in \(K \) and so there exists a \(\delta_M\)-supplement \(Y \) of \(K \cap (X + L) \) in \(K \). Hence \(K = Y + K \cap (X + L) \) and \(Y \cap (K \cap (X + L)) = Y \cap (X + L) \leq_{\delta_M} Y \). Now we show \(X + Y \) is a \(\delta_M\)-supplement of \(L \) in \(N \). It is clear that \((X + Y) + L = N \). Moreover \((X + Y) \cap L \leq X \cap (L + Y) + Y \cap (X + L) \leq X \cap (K + L) + Y \cap (X + L) \leq_{\delta_M} X + Y \). This complete the proof. \(\square \)

Theorem 2.4 Let \(N \) be in \(\sigma[M] \) and let \(\{N_i\}_{i \in I} \) be a family of submodules of \(N \). If each \(N_i \) is \(\text{cof}-\delta_M\)-supplemented, then \(\sum_{i \in I} N_i \) is \(\text{cof}-\delta_M\)-supplemented.

Proof. Let \(L \) be a cofinite submodule of \(K = \sum_{i \in I} N_i \). Then there exist \(i_1, i_2, \ldots, i_n \) in \(I \) such that \(K = L + N_{i_1} + \ldots + N_{i_n} \). Applying Lemma 2.3 inductively, we get \(L \) has \(\delta_M\)-supplement in \(K \). So \(\sum_{i \in I} N_i \) is \(\text{cof}-\delta_M\)-supplemented. \(\square \)

Now we are going to find necessary and sufficient conditions for a module \(N \) in \(\sigma[M] \) to be a cofinite module. Firstly we need the following Lemma.

Lemma 2.5 Let \(L, K \) be submodules of a module \(N \) in \(\sigma[M] \) such that \(K \) is a \(\delta_M\)-supplement of a maximal submodule of \(N \) and \(K + L \) has a \(\delta_M\)-supplement in \(N \). Then \(L \) has a \(\delta_M\)-supplement in \(N \).

Proof. Let \(K \) be a \(\delta_M\)-supplement of a maximal submodule \(Q \) of \(N \) and \(X \) is \(\delta_M\)-supplement of \(K + L \) in \(N \). Then \(N = K + Q = X + K + L, K \cap Q \leq_{\delta_M} K \) and \(X \cap (K + L) \leq_{\delta_M} X \).

Consider two cases:

Case (i) If \(K \cap (X + L) \leq K \cap Q \), then we will show that \(X + K \) is a \(\delta_M\)-supplement of \(L \) in \(N \). Clearly we have only to prove \((X + K) \cap L \leq_{\delta_M} X + K \).

Since \(X \cap (L + K) \leq_{\delta_M} X \) and \(K \cap (X + L) \leq K \cap Q \leq_{\delta_M} K \), by Lemma 1.1, \(X \cap (L + K) + K \cap (X + L) \leq_{\delta_M} X + K \). Then \((X + K) \cap L \leq_{\delta_M} X + K \) as
L \cap (X + K) \subseteq X \cap (L + K) + K \cap (X + L). Thus X + K is a \(\delta_M \)-supplement of L in N.

Case (ii) \(K \cap (X + L) \) is not a subset of \(K \cap Q \). Since \(K/K \cap Q \cong (K+Q)/Q = N/Q \), \(K \cap Q \) is maximal in \(K \). Hence \(K = (K \cap Q) + (K \cap (X + L)) \). Since \(K \cap Q \ll_{\delta_M} K \), by Lemma 1.1, there exists a semisimple submodule \(Y \) of \(N \) which is projective in \(\sigma[M] \) such that \(K = Y \oplus (K \cap (X + L)) \) and \(Y \subseteq K \cap Q \). We will show that \(X + Y \) is a \(\delta_M \)-supplement of \(L \) in \(N \). We have \(X + Y + L = X + K \cap (X + L) + Y + L = N \). Since \(X \cap (L + K) \ll_{\delta_M} X \), \(X \cap (L + Y) \ll_{\delta_M} X \). Since \(Y \cap (L + X) \leq Y \leq K \cap Q \ll_{\delta_M} K \) and \(Y \) is a direct summand of \(K \), by Lemma 1.1, \(Y \cap (L + X) \ll_{\delta_M} Y \). Hence \(X \cap (L + Y) \) is a \(\delta_M \)-supplement in \(N \). This implies \(L \cap (X + Y) \ll_{\delta_M} X + Y \). Since \(L \cap (X + Y) \) is cofinite in \(N \), \(X \cap (L + X) + Y \cap (L + X) \ll_{\delta_M} X + Y \) (Lemma 1.1). So \(X + Y \) is a \(\delta_M \)-supplement of \(L \) in \(N \).

For any module \(N \) in \(\sigma[M] \), let \(\text{Cof}_{\delta_M}(N) \) be the sum of all submodules of \(N \) that are \(\delta_M \)-supplements of maximal submodules of \(N \) and let \(\text{Cof}_{\delta_M}(N) = 0 \) if there is no such submodule.

Theorem 2.6 For any module \(N \) in \(\sigma[M] \), the following are equivalent:

(a) \(N \) is \(\text{cof-} \delta_M \)-supplemented.

(b) Every maximal submodule of \(N \) has a \(\delta_M \)-supplement in \(N \).

(c) The module \(N/\text{Cof}_{\delta_M}(N) \) has no maximal submodule.

Proof. (a)⇒(b) is obvious.

(b)⇒(c). Suppose to a contrary that \(N/\text{Cof}_{\delta_M}(N) \) has a maximal submodule \(Q/\text{Cof}_{\delta_M}(N) \). Then \(Q \) is a maximal submodule of \(N \) containing \(\text{Cof}_{\delta_M}(N) \). By (b), \(Q \) has a \(\delta_M \)-supplement \(K \) in \(N \). Hence \(N = K + Q \) and \(K \subseteq \text{Cof}_{\delta_M}(N) \). So \(N = Q \), a contradiction. Then \(N/\text{Cof}_{\delta_M}(N) \) has no maximal submodule.

(c)⇒(a). Let \(L \) be a cofinite submodule of \(N \). Then \(L + \text{Cof}_{\delta_M}(N) \) is also cofinite in \(N \). Hence \(L + \text{Cof}_{\delta_M}(N) = N \) otherwise \(N/\text{Cof}_{\delta_M}(N) \) will have a maximal submodule. Then, since \(N/L \) is finitely generated, there exist a finite number of submodules \(K_1, K_2, \ldots, K_n \) of \(N \) that are \(\delta_M \)-supplements of maximal submodules of \(N \) such that \(N = L + K_1 + K_2 + \ldots + K_n \). By Lemma 2.5, \(L + K_1 + K_2 + \ldots + K_{n-1} \) has a \(\delta_M \)-supplement because \(N = (L + K_1 + K_2 + \ldots + K_{n-1}) + K_n \) has 0 as a \(\delta_M \)-supplement in \(N \). By repeated use of Lemma 2.5, \(L \) has a \(\delta_M \)-supplement in \(N \). Hence \(N \) is \(\text{cof-} \delta_M \)-supplemented.

Example 2.7 The \(\mathbb{Z} \)-module \(\mathbb{Q} \) of rational numbers has no maximal submodule, so it is \(\text{cof-} \delta_2 \)-supplemented. But it is not \(\delta_2 \)-supplemented.

Definition 2.8 Let \(N \) be in \(\sigma[M] \). \(N \) is called an amply cofinitely \(\delta_M \)-supplemented, briefly, amply \(\text{cof-} \delta_M \)-supplemented, if every cofinite submodule of \(N \) has an ample \(\delta_M \)-supplement in \(N \).
Theorem 2.9 A module $N \in \sigma[M]$ whose all submodules are cof-δ_M-supplemented modules is amply cof-δ_M-supplemented.

Proof. Let K be a cofinite submodule of N and $L \leq N$ such that $N = L + K$. Then $K \cap L$ is a cofinite submodule of L as $L/(L \cap K) \cong N/K$ and N/K is finitely generated. Since L is cof-δ_M-supplemented, $K \cap L$ has a δ_M-supplement H in L. Hence $L = (L \cap K) + H$ and $L \cap K \cap H \ll_{\delta_M} H$, imply that $N = L + K = L \cap K + H + K = K + H$ and $H \cap K \ll_{\delta_M} H$ that is L contains a δ_M-suplement of K in N. So N is an amply cofinitely δ_M-supplemented module.

Corollary 2.10 The following are equivalent for any module M

(a) Every module in $\sigma[M]$ is an amply cof-δ_M-supplemented module.

(b) Every module in $\sigma[M]$ is a cof-δ_M-supplemented module.

Proof. (a) \Rightarrow (b). This obvious as every amply cof-δ_M-supplemented module is cof-δ_M-supplemented.

(b) \Rightarrow (a). Since $\sigma[M]$ is closed under submodules, (a) follows directly from Theorem 2.9.

If we take $M = R$ in Corollary 2.10, then we get the following corollary. □

Corollary 2.11 ([13], Corollary 3.5) The following are equivalent for a ring R.

(a) Every module is an amply cof-δ-supplemented module.

(b) Every module is a cof-δ-supplemented module.

Following [14 page. 359], a module M is called π-projective if for every two submodules L, K of M with $K + L = M$ there exists $f \in \text{End}(M)$ with $\text{Im}(f) \subseteq K$ and $\text{Im}(1-f) \subseteq L$.

Theorem 2.12 If N is a π-projective cof-δ_M-supplemented module in $\sigma[M]$, then N is an amply cof-δ_M-supplemented module.

Proof. Let K be a cofinite submodule of N and $L \leq N$ such that $N = K + L$. Since N is π-projective, there exists $f \in \text{End}(N)$ such that $f(N) \leq K$ and $(1-f)(N) \leq L$. Note that $(1-f)(K) \leq K$ and $N = f(N) + (1-f)(N)$. If H is a δ_M-supplement of K in N, then $(1-f)(N) = (1-f)(K) + (1-f)(H) \leq K + (1-f)(H)$. So $N = K + (1-f)(H)$. We claim that $K \cap (1-f)(H) \ll_{\delta_M} (1-f)(H)$. Clearly $(1-f)(H) \leq L$. Since $K \cap H \ll_{\delta_M} K$ by Lemma 1.1, $(1-f)(K \cap H) \ll_{\delta_M} (1-f)(H)$. Now, let $k \in K \cap (1-f)(H)$. Then $k \in K$ and $k = h - f(h)$ for some $h \in H$. Hence $h = k + f(h)$ in K as $k, f(h) \in K$. So $k \in (1-f)(K \cap H)$. Thus $K \cap (1-f)(H) \leq (1-f)(K \cap H) \ll_{\delta_M} (1-f)(H)$. It follows that N is an amply cof-δ_M-supplemented module. □
Theorem 2.13 Let $N \in \sigma[M]$ be $\text{cof-}\delta_M$ supplemented. Then every cofinite submodule of $N/\delta_M(N)$ is a direct summand.

Proof. Let $K/\delta_M(N)$ be a cofinite submodule of $N/\delta_M(N)$. Hence N/K is finitely generated since $(N/\delta_M(N))/(K/\delta_M(N)) \cong N/K$. So K is a cofinite submodule of N. Since N is a $\oplus-\text{cof-}\delta_M$ supplemented module, there exists a submodule L of N such that $N = K + L$ and $K \cap L \leq_{\delta_M} L$. Hence $N/\delta_M(N) = (K + L)/\delta_M(N)$ and $K \cap L \leq_{\delta_M} N$. Thus $N/\delta_M(N) = K/\delta_M(N) \oplus (L + \delta_M(N))/\delta_M(N)$ because $K \cap L \leq_{\delta_M} N$. Hence $K/\delta_M(N)$ is a direct summand of $N/\delta_M(N)$.

Corollary 2.14 Let N be cof-\(\delta_M\)-supplemented. Then:

1. $N/\delta_M(N)$ is \oplus-cof-\(\delta_M\)$-supplemented.
2. If $\delta_M(N)$ is a cofinite submodule of N, then $N/\delta_M(N)$ is a semisimple module.

We show that arbitrary direct sum of \oplus-cof-\(\delta_M\)-supplemented modules is \oplus-cof-\(\delta_M\)$-supplemented. First we prove the following Lemma.

Lemma 2.15 Let L and K be submodules of a module N in $\sigma[M]$ such that $K + L$ has a δ_M-supplement X in N and $K \cap (X + L)$ has a δ_M-supplement Y in K. Then $X + Y$ is a δ_M-supplement of L in N.

Proof. We have $N = X + (K + L)$ such that $X \cap (K + L) \leq_{\delta_M} X$ and $K = Y + (K \cap (X + L))$ such that $Y \cap (K \cap (X + L)) \leq_{\delta_M} Y$. Hence, by Lemma 1.1, $X \cap (K + L) + Y \cap (K \cap (X + L)) \leq_{\delta_M} X + Y$. Then $L \cap (X + Y) \leq_{\delta_M} X + Y$. Moreover $N = X + Y + L$. Thus $X + Y$ is a δ_M-supplement of L in N. \(\square\)

Lemma 2.16 Let N_1 and N_2 be submodules of a module $N \in \sigma[M]$ such that $N = N_1 \oplus N_2$. If N_1 and N_2 are \oplus-cof-\(\delta_M\)$-supplemented modules, then N is also \oplus-cof-\(\delta_M\)$-supplemented.

Proof. Let K be a cofinite submodule of N. Then $N = N_1 + N_2 + K$ has 0 as a δ_M-supplement in N. We have $N_2/(N_2 \cap (N_1 + K)) \cong (N_1 + N_2 + K)/(N_1 + K) = N/(N_1 + K)$. So $N_2 \cap (N_1 + K)$ is a cofinite submodule of N_2. Since N_2 is \oplus-cof-\(\delta_M\)$-supplemented, there exists $L \leq_{\oplus} N_2$ such that L is a δ_M-supplement of $N_2 \cap (N_1 + K)$ in N_2. By Lemma 2.15, L is a δ_M-supplement of $N_1 + K$. Similarly since N_1 is \oplus-cof-\(\delta_M\)$-supplemented, there exists $H \leq_{\oplus} N_1$ such that H is a δ_M-supplement of $N_1 \cap (L + K)$ in N_1. Again applying Lemma 2.15, $L + H$ is a δ_M-supplement of K in N. Since $H \leq_{\oplus} N_1$ and $L \leq_{\oplus} N_2$, $H + L = H \oplus L$ is a direct summand of N. \(\square\)

Theorem 2.17 A direct sum $\oplus_{i \in I} N_i$ of \oplus-cof-\(\delta_M\)$-supplemented modules is a \oplus-cof-\(\delta_M\)$-supplemented module.
Proof. Let \(N = \oplus_{i \in I} N_i \) and let \(K \) be a cofinite submodule of \(N \). Then there exists a finitely generated submodule \(L \) of \(N \) such that \(N = K + L \). Hence there exists a finite subset \(J \) of \(I \) such that \(L \leq \oplus_{j \in J} N_j \) and so \(N = K + (\oplus_{j \in J} N_j) \). By Lemma 2.16, \(\oplus_{j \in J} N_j \) is a \(\oplus \)-cof-\(\delta_M \)-supplemented module. Let \(Q = \oplus_{j \in J} N_j \). Then \(N = K + Q \). Note that \(N/K \cong (K + Q)/K \cong Q/(K \cap Q) \). So \(K \cap Q \) is a cofinite submodule of \(Q \). Since \(Q \) is a \(\oplus \)-cof-\(\delta_M \)-supplemented, there exists \(H \leq \oplus Q \) such that \(Q = H + (K \cap Q) \) and \(K \cap Q \leq \delta_M H \). Now \(N = K + Q = K + H \) and \(H \cap Q \leq \delta_M H \). Hence \(H \) is a \(\delta_M \)-supplement of \(K \) in \(N \) and \(H \leq \oplus N \) because \(Q \leq \oplus N \).

The next example gives a \(\oplus \)-cof-\(\delta_M \)-supplemented module which is not \(\oplus \)-cof-supplemented.

Example 2.18 Let \(M = \mathbb{Z} = R \) and \(N_i = \mathbb{Z} (P^\infty) \) be the Prüfer \(p \)-group for all \(i \in \mathbb{N} \). Then each \(N_i \) is supplemented module. Suppose that \(N = \oplus_{i \in \mathbb{N}} N_i \). By Theorem 2.17 \(N \) is \(\oplus \)-cof-\(\delta_M \)-supplemented but not \(\oplus \)-cof-supplemented by ([7], Example 2.14).

Now we give sufficient coditions for a factor module of a \(\oplus \)-cof-\(\delta_M \)-supplemented module to be \(\oplus \)-cof-\(\delta_M \)-supplemented.

Theorem 2.19 Let \(N \in \sigma[M] \) be a \(\oplus \)-cof-\(\delta_M \)-supplemented module and \(K \) a submodule of \(N \). If for every direct summand \(L \) of \(N \), \((K + L)/K \) is a direct summand of \(N/K \), then \(N/K \) is a \(\oplus \)-cof-\(\delta_M \)-supplemented module.

Proof: Suppose that \(L/K \) is a cofinite submodule of \(N/K \). Then \(N/L \) is finitely generated since \((N/K)/(L/K) \cong N/L \). Since \(N \) is a \(\oplus \)-cof-\(\delta_M \)-supplemented module, there exists a direct summand \(X \) of \(N \) such that \(N = X \oplus Y = L + X \) and \(X \cap L \leq \delta_M X \) for some submodule \(Y \) of \(N \). Now \(N/K = (L/K + (X + K)/K \). By the hypothesis, \((X + K)/K \) is a direct summand of \(N/K \). Note that \((L/K) \cap (X + K)/K = (L \cap (X + K))/K \). Since \(X \cap L \leq \delta_M X \), \((K + (X \cap L))/K \leq \delta_M (X + K)/K \). This implies \((X + K)/K \) is a \(\delta_M \)-supplement of \(L/K \) in \(N/K \) which is a direct summand.

Recall that a submodule \(X \) of a module \(N \) is called fully invariant if for every \(f \in \text{End}(N) \), \(f(X) \subseteq X \). The module \(N \) is called duo, if every submodule of \(N \) is fully invariant. It is well known that if \(N = N_1 \oplus N_2 \) is a duo module, then \(X = (X \cap N_1) \oplus (X \cap N_2) \), for each submodule \(X \) of \(N \). A module \(N \) is called distributive if its lattice of submodules is a distributive lattice.

Theorem 2.20 Let \(N \in \sigma[M] \) be a \(\oplus \)-cof-\(\delta_M \)-supplemented. Assume that either \(N \) is

1. a duo module, or
(2) a distributive module. Then every factor module and hence every direct summand of \(N \) is \(\oplus \)-cof-\(\delta_M \)-supplemented.

Proof. Let \(K \leq N \). We show that \(N/K \) is \(\oplus \)-cof-\(\delta_M \)-supplemented.

(1) Suppose that \(N \) is a duo module. As any cofinite submodule of \(N/K \) has the form \(L/K \) where \(L \) is a cofinite submodule of \(N \) and \(K \leq L \), there exist submodules \(X \) and \(Y \) such that \(N = L + X = X \oplus Y \) and \(L \cap X \leq \delta_M X \). Note that \(N/K = (X + L)/K = (X + K)/K + L/K \), by modularity, \(L \cap (X + K) = (L \cap X) + K \). Since \(L \cap X \leq \delta_M X \), we have \((L/K) \cap (X + K)/K = ((L \cap X) + K)/K \leq \delta_M (X + K)/K \) by Lemma 1.1. This implies \((X + K)/K \) is a \(\delta_M \)-supplement of \(L/K \) in \(N/K \). Now \(K = (K \cap X) \oplus (K \cap Y) \) implies \((X + K) \cap (Y + K) \leq K\) and \((X + (X \cap K) + (K \cap Y)) \cap Y\). It follows that \((X + K) \cap (X + K) \leq \delta_M (X + K)/K \) and \(N/K = [(X + K)/K] \oplus [(Y + K)/K] \). Then \((X + K)/K \) is a direct summand of \(N/K \). Hence by Theorem 2.19, \(N/K \) is \(\oplus \)-cof-\(\delta_M \)-supplemented.

(2) If \(N \) is distributive, let \(X \) be a direct summand of \(N \). Then \(N = X \oplus Y \), for some \(Y \leq N \). Then \(N = (X + K)/K \oplus (Y + K)/K \) and \(K = K + X \cap Y = (K + X) \cap (K + Y) \) by distributivity of \(N \). This implies that \(N = (X + K)K \oplus (Y + K)/K \). By Theorem 2.19, \(N/K \) is a \(\oplus \)-cof-\(\delta_M \)-supplemented module.

A module \(N \) is said to have the summand sum property (SSP, for short), if the sum of any two direct summands of \(N \) is again a direct summand of \(N \).

Theorem 2.21. Every direct summand of a \(\oplus \)-cof-\(\delta_M \) supplemented module with SSP is \(\oplus \)-cof-\(\delta_M \) supplemented.

Proof. Let \(N \in \sigma[M] \) be a \(\oplus \)-cof-\(\delta_M \)-supplemented module with PSS. Let \(K \) be a direct summand of \(N \). Then \(N = K \oplus L \) for some \(L \leq N \). It is suffice to show that \(N/L \) is \(\oplus \)-cof-\(\delta_M \) -supplemented. Suppose that \(X \) is a direct summand of \(N \). Since \(N \) has SSP, \(L + X \) is a direct summand of \(N \). Then \(N = (L + X) \oplus Y \), for some \(Y \leq N \). Then \(N/L = (L + X)/L \oplus (Y + L)/L \). Therefore \(N/L \) is a \(\oplus \)-cof-\(\delta_M \)-supplemented module by Theorem 2.19. □

3 Cofinitely \(\delta_M \)-semiperfect Modules.

By the semiperfect in \(\sigma[M] \) and cofinitely \(\delta \)-semiperfect we introduce the notation cofinitely \(\delta_M \)-semiperfect modules and study their basic properties. We also characterize these modules using the notation cofinitely \(\delta_M \)-supplemented modules.

Let \(N, P \in \sigma[M] \). An epimorphism \(f : P \to N \) is called a \(\delta_M \)-cover if \(\text{Ker}(f) \leq \delta_M P \). A \(\delta_M \)-cover \(f : P \to N \) is called a projective \(\delta_M \)-cover in case \(P \) is projective in \(\sigma[M] \).
Definition 3.1 A module N in $\sigma[M]$ is called a cofinitely δ_M-semiperfect module, briefly cof-δ_M-semiperfect, if factor module of N by a cofinite submodule has a projective δ_M-cover.

Next we give some properties of cof-δ_M-semiperfect modules, but first we need the following lemma:

Lemma 3.2 Let N, P and Q be in $\sigma[M]$. Suppose that $f : P \rightarrow N, g : P \rightarrow Q$ and $h : Q \rightarrow N$ are homomorphisms such that $hg = f$. Then f is a projective δ_M-cover if and only if $g(P)$ is a δ_M-supplement of $\text{Ker}(h)$ in Q and $\text{Ker}(g) \leq \delta_M P$.

Proof. Suppose that f is a projective δ_M -cover. Then $Q = \text{Ker}(h) + g(P)$. Note that $g(\text{Ker}(f)) = \text{Ker}(h) \cap g(P)$. Since $\text{ker}(f) \leq \delta_M P$, by lemma 1.1, $g(\text{Ker}(f)) \leq \delta_M g(P)$. Thus $g(P)$ is a δ_M-supplement of $\text{Ker}(h)$ in Q.

Conversely, suppose that $g(P)$ is a δ_M-supplement of $\text{Ker}(h)$ in Q and $\text{Ker}(g) \leq \delta_M P$. Hence $Q = \text{Ker}(h) + g(P)$ and $\text{Ker}(h) \cap g(P) \leq \delta_M g(P)$. Clearly f is epimorphism. It remain to show that $\text{Ker}(f) \leq \delta_M P$. Let $P = \text{Ker}(f) + S$ with P/S M-singular. So $g(P) = g(\text{Ker}(f)) + g(S)$. Since $g(P)/g(S)$ is a homomorphic image of M-singular module P/S and $g(\text{Ker}(f)) = g(\text{Ker}(h) \cap g(P)) \leq \delta_M g(P), g(P) = g(S)$. So $P = S + \text{Ker}(g)$. But $\text{Ker}(g) \leq \delta_M P$ and P/S is M -singular. Hence $P = S$ and thus $\text{Ker}(f) \leq \delta_M P$. □

Theorem 3.3 Let N be a cof-δ_M-semiperfect module in $\sigma[M]$. Then

1. N is cof-δ_M-supplemented.
2. Homomorphic images of N are cofinitely δ_M -semiperfect and hence factor modules and direct summands of N are cofinitely δ_M-semiperfect modules.

Proof. (1) Let K be a cofinite submodule of N. Then there exists a projective δ_M-cover $f : P \rightarrow N/K$. If $\eta : N \rightarrow N/K$ is the canonical map, then, since P is projective in $\sigma[M]$, there exists a homomorphism $g : P \rightarrow N$ such that $\eta g = f$. Thus, by Lemma 3.2, $g(P)$ is a δ_M supplement of K in N. Therefore N is cof-δ_M -supplemented.

(2) Let $f : N \rightarrow Q$ be an epimorphism and X be a cofinite submodule of Q. Then $f^{-1}(X)$ is cofinite in N as $Q/X \cong N/f^{-1}(X)$. By assumption $N/f^{-1}(X)$ and hence Q/X has a projective δ_M-cover. Then, Q is cof-δ_M-semiperfect. □

Theorem 3.4 (see[1], Theorem 3.2) Let N be in $\sigma[M]$ and $K \leq N$. Then the following are equivalent :

(a) N/K has a projective δ_M-cover.
(b) If $L \leq N$ and $N = K + L$, then K has a δ_M-supplement $K' \leq L$ such that K' has a projective δ_M-cover.
(c) K has a δ_M-supplement K' which has a projective δ_M-cover.
As immediate consequence of Theorem 3.4 we get the following theorem.

Theorem 3.5 Let \(N \) be a module in \(\sigma[M] \). Then the following are equivalent:

(a) \(N \) is cof-\(\delta_M \)-semiperfect.
(b) \(N \) is amply cof-\(\delta_M \)-supplemented by \(\delta_M \)-supplements which have a projective \(\delta_M \)-cover.
(c) \(N \) is cof-\(\delta_M \)-supplemented by \(\delta_M \)-supplements which have a projective \(\delta_M \)-cover.

Take \(M = R \) in 3.5 we get the following Corollary.

Corollary 3.6 ([3], Theorem 3.4) The following are equivalent for any module \(N \):

(a) \(N \) is cof-\(\delta \)-semiperfect.
(b) \(N \) is amply cof-\(\delta \)-supplemented by \(\delta \)-supplements which have a projective \(\delta \)-cover.
(c) \(N \) is cof-\(\delta \)-supplemented by \(\delta \)-supplements which have a projective \(\delta \)-cover.

Theorem 3.7 Let \(N \in \sigma[M] \) be a projective module in \(\sigma[M] \). Then \(N \) is cof\(\delta_M \)-semiperfect if and only if \(N \) is \(\oplus \)-cof\(\delta_M \)-supplemented.

Proof. First suppose that \(N \) is cof\(\delta_M \)-semiperfect.

Let \(K \) be a cofinite submodule of \(N \). Then, by assumption, \(N/K \) has a projective \(\delta_M \)-cover. Hence, by [8, Lemma 2.14], there are \(N_1, N_2 \leq N \) such that \(N = N_1 \oplus N_2 \) with \(N_1 \leq K \) and \(N_2 \cap K \ll_{\delta_M} N \). Hence, by Lemma 1.1, \(N_2 \cap K \ll_{\delta_M} N_2 \). Hence \(N_2 \) is a \(\delta_M \)-supplement of \(K \) in \(N \).

Conversely, assume that \(K \) is a cofinite submodule of \(N \). Since \(N \) is \(\oplus \)-cof\(\delta_M \)-supplemented, there exists submodule \(K_1 \) and \(K_2 \) of \(N \) such that \(N = K + K_1 \), \(K \cap K_1 \ll_{\delta_M} K_1 \) and \(N = K_1 \oplus K_2 \), clearly, \(K_1 \) is projective in \(\sigma[M] \). For the inclusion homomorphism \(i : K_1 \to N \) and the canonical epimorphism \(\sigma : N \to N/K, \text{Ker}(\sigma i) = K \cap K_1 \ll_{\delta_M} K_1 \). Thus \(\sigma i : K_1 \to N/K \) is a projective \(\delta_M \)-cover. \(\square \)

Theorem 3.8 Let \(N \in \sigma[M] \) and \(f : Q \to N \) be a \(\delta_M \)-cover. Then

1. If \(N \) is cof\(\delta_M \)-semiperfect, then so is \(Q \).
2. If \(Q \) is a projective in \(\sigma[M] \), then the following are equivalent:
 (a) \(N \) is cof\(\delta_M \)-semiperfect.
 (b) \(Q \) is cof\(\delta_M \)-semiperfect.
 (c) \(Q \) is \(\oplus \)-cof\(\delta_M \)-supplemented.
Proof. (1) Let N be a $\text{cof-} \delta_M$-semiperfect module in $\sigma[M]$ and $f : Q \rightarrow N$ be a δ_M-cover. Suppose that X is a cofinite submodule of Q. Then $f(X)$ is a cofinite submodule of N. Hence $N/f(X)$ has a projective δ_M-cover

$$g : P \rightarrow N/f(X).$$

The homomorphism $\varphi : Q/X \rightarrow N/f(X)$ defined by $q + X \mapsto f(q) + f(X)$ is an epimorphism. We claim that $\text{Ker}(\varphi) \ll_{\delta_M} Q/X$. Let $Y/X \leq Q/X$ such that $Q/X = \text{Ker}(\varphi) + Y/X$ and $(Q/X)/(Y/X)$ is M-singular. So $Q/X = (\text{Ker}(f) + X)/X + Y/X$ as $\text{Ker}(\varphi) = (X + \text{Ker}(f))/X$. Hence $Q = \text{Ker}(f) + Y$ and Q/Y is M-singular. This implies $Q = Y$ since $\text{Ker}(f) \ll_{\delta_M} Q$. We have $\text{Ker}(\varphi) = (X + \text{Ker}(f))/X$. Since P is projective in $\sigma[M]$, there is a homomorphism $h : P \rightarrow N/X$ such that $g = \varphi h$. Then $N/X = h(P) + \text{Ker}(\varphi)$.

Let $\eta : P \oplus Z \rightarrow N/X$, defined by $h(p, A) = h(p) + A$. Then η is an epimorphism and $\text{Ker}(\eta) = \text{Ker}(h) \oplus 0$. Moreover $\text{Ker}(h) \leq \text{Ker}(g) \leq_{\delta_M} A$. Hence $\text{Ker}(h) \oplus 0 \ll_{\delta_M} P \oplus Z$. Thus $\eta : P \oplus Z \rightarrow N/X$ is a projective δ_M-cover of N/X.

(2) $(a) \Leftrightarrow (b)$ By (1) and Theorem 3.3(2).

$(b) \Leftrightarrow (c)$ By Theorem 3.7.

Theorem 3.9 An arbitrary direct sum of projective modules $P_i, i \in I$ in $\sigma[M]$ is $\text{cof-} \delta_M$-semiperfect if and only if each P_i is $\text{cof-} \delta_M$-semiperfect.

Proof. Let $\{P_i\}_{i \in I}$ be a collection of projective modules in $\sigma[M]$. Suppose that $P = \bigoplus_{i \in I} P_i$ is a $\text{cof-} \delta_M$-semiperfect. Since the projection map $\pi_j : P \rightarrow P_j$ is an epimorphism for every j in I, by Theorem 3.3 $\pi_j(P) = P_j$ is $\text{cof-} \delta_M$-semiperfect.

Conversely, assume that each P_i is $\text{cof-} \delta_M$-semiperfect. Hence, by Theorem 3.7, each P_i is $\text{cof-} \delta_M$-supplemented and so P is $\text{cof-} \delta_M$-supplemented by Theorem 2.17. Thus P is $\text{cof-} \delta_M$-semiperfect by Theorem 3.7.

Using 3.9, 3.7, 3.3 and 2.7, we get the following Theorem:

Theorem 3.10 Let $N \in \sigma[M]$ be a projective module in $\sigma[M]$. Then the following are equivalent:

(a) N is $\text{cof-} \delta_M$-semiperfect.
(b) $N^{(\Lambda)}$ is $\text{cof-} \delta_M$-semiperfect, for any index set Λ.
(c) $N^{(\Lambda)}$ is $\text{cof-} \delta_M$-supplemented, for any index set Λ.
(d) $N^{(\Lambda)}$ is $\text{cof-} \delta_M$-semiperfect, for any finite set Λ.
(e) $N^{(\Lambda)}$ is $\text{cof-} \delta_M$-supplemented for any finite set Λ.
(f) Every module in $\text{Add } N$ is $\text{cof-} \delta_M$-semiperfect.
(g) Every module in $\text{Add } N$ is $\text{cof-} \delta_M$-supplemented.
(h) Every N-generated R-module is $\text{cof-} \delta_M$-semiperfect.
(i) N is $\text{cof-} \delta_M$-supplemented.
Recall that $\text{Add} R$ is the class of all projective R-modules and an R-module is a free R-module if and only if it is a direct sum of copies of R. Moreover R generates every R-module. Hence taking $M = N = R$ in Theorem 3.10 and using the fact finitely generated cof-δ-semiperfect (\oplus-cof-δ-supplemented) modules are δ-semiperfect (\oplus-δ-supplemented)modules we obtain the following known characterization of a δ-semiperfect ring.

Corollary 3.11 For any ring R, the following are equivalent:

(a) R is δ-semiperfect.
(b) Every free R-module is cof-δ-semiperfect.
(c) Every free R-module is \oplus-cof-δ-supplemented.
(d) Every finitely generated free R-module is δ-semiperfect.
(e) Every finitely generated free R-module is \oplus-δ-supplemented.
(f) Every projective R-module is cof-δ-semiperfect.
(g) Every projective R-module is \oplus-cof-δ-supplemented.
(h) Every R-module is cof-δ-supplemented.
(i) R is \oplus-δ-supplemented.

References

Received: August, 2011