A Note on Trace Map

Dhirendra Singh Yadav

Department of Mathematics
Indian Institute of Technology Delhi
Hauz Khas, New Delhi - 110016, India
ds.yadav.iitd@gmail.com

R. K. Sharma

Department of Mathematics
Indian Institute of Technology Delhi
Hauz Khas, New Delhi - 110016, India
rksharma@maths.iitd.ac.in

Wagish Shukla

Department of Mathematics
Indian Institute of Technology Delhi
Hauz Khas, New Delhi - 110016, India
wagishs@maths.iitd.ac.in

Abstract

It is well known that if F is a finite extension of the finite field K then for any linear transformation $T : F \rightarrow K$ (viewing both F and K as a vector space over K) there exists a unique $\theta \in F$ such that $T(\alpha) = Tr_{F/K}(\theta \alpha)$ for all $\alpha \in F$, where $Tr_{F/K} : F \rightarrow K$ is the trace map. In this note we determine this θ for a given T.

Mathematics Subject Classification: 11T06, 11T30

Keywords: Finite Field, Trace Map, Affine Polynomial

1 Introduction

Let m be a positive integer and \mathbb{F}_{q^m} be the m degree extension of the finite field \mathbb{F}_q, where q is some prime power. The map

$$Tr_{\mathbb{F}_{q^m}/\mathbb{F}_q} : \mathbb{F}_{q^m} \rightarrow \mathbb{F}_q$$
given by
\[\text{Tr}_{\mathbb{F}_q^m/\mathbb{F}_q}(\alpha) = \alpha + \alpha^q + \cdots + \alpha^{q^{m-1}}, \quad \forall \alpha \in \mathbb{F}_q^m \]
is called the trace map [4].

There are many approaches, like concept of characteristic polynomial, idea of conjugates etc., to show that \(\text{Tr}_{\mathbb{F}_q^m/\mathbb{F}_q} \) is indeed a map from \(\mathbb{F}_q^m \) to \(\mathbb{F}_q \). The easiest way is by recalling the fact that \(a \in \mathbb{F}_q \) iff \(a^q = a \) and observing that
\[
(\alpha + \alpha^q + \cdots + \alpha^{q^{m-1}})^q = \alpha + \alpha^q + \cdots + \alpha^{q^{m-1}}.
\]

If we view \(\mathbb{F}_q^m \) and \(\mathbb{F}_q \) as vector spaces over \(\mathbb{F}_q \) then \(\text{Tr}_{\mathbb{F}_q^m/\mathbb{F}_q} \) turns out to be a linear transformation from \(\mathbb{F}_q^m \) onto \(\mathbb{F}_q \) [4].

Trace map plays a very important role in the theory of finite fields. It has many applications in cryptography, coding theory and many other areas (see [2, 4] for details).

We shall need the following result:

Theorem 1.1 [[4], Theorem 2.24] Let \(F \) be a finite extension of the finite field \(K \), both considered as vector spaces over \(K \). Then the linear transformations from \(F \) into \(K \) are exactly the mappings \(L_\beta, \beta \in F \), where \(L_\beta(\alpha) = \text{Tr}_{F/K}(\beta \alpha) \) for all \(\alpha \in F \). Furthermore, we have \(L_\beta \neq L_\gamma \) whenever \(\beta \) and \(\gamma \) are distinct elements of \(F \).

Remark. Known proofs of Theorem 1.1 are existential in nature and they do not provide any information about \(\beta \) for a given linear transformation \(T \) such that \(T = L_\beta \).

Definition 1.2 An affine \(q \)-polynomial over \(\mathbb{F}_q^m \) is a polynomial of the form
\[
A(x) = \alpha_n x^{q^n} + \alpha_{n-1} x^{q^{n-1}} + \cdots + \alpha_1 x^q + \alpha_0 x - \alpha \in \mathbb{F}_q[x]
\]
If \(\alpha_0 \neq 0 \) then \(\gcd(A(x), A'(x)) = 1 \). This shows that if the coefficient of \(x \) is nonzero then all roots of the affine \(q \)-polynomial under consideration are simple. Finding roots of an affine polynomial is relatively easy [4]. Affine polynomials can also be used to find roots of any polynomial \(f(x) \in \mathbb{F}_q[x] \) using the so-called affine multiple of \(f(x) \) [1].

2 Main Result

Let \(T : \mathbb{F}_q^m \to \mathbb{F}_q \) be a linear transformation and \(B = \{\alpha_1, \alpha_2, \ldots, \alpha_m\} \) be a basis of \(\mathbb{F}_q^m \) over \(\mathbb{F}_q \). Since \(T \) is \(q \)-linear so the only information required to describe \(T \) completely is \(T(\alpha_1), T(\alpha_2), \ldots, T(\alpha_m) \).

We, now, state our main result:
Theorem 2.1 Let $T : \mathbb{F}_{q^m} \rightarrow \mathbb{F}_q$ be a linear transformation and \{\(\alpha_1, \alpha_2, \ldots, \alpha_m\)\} be a basis of \mathbb{F}_{q^m} over \mathbb{F}_q with $T(\alpha_i) = a_i$ for $i = 1, 2, \ldots, m$, where $a_i \in \mathbb{F}_q$. For $i = 1, 2, \ldots, m$ define the affine q-polynomials
\[A_i(x) = \alpha_i^{q^m-1} x^{q^m-1} + \alpha_i^{q^m-2} x^{q^m-2} + \cdots + \alpha_i x - a_i \in \mathbb{F}_{q^m}[x] \]
and let $A(x)$ be the (monic) greatest common divisor of $A_1(x), \ldots, A_m(x)$. Then $A(x)$ has a unique root θ in \mathbb{F}_{q^m}. Further this θ satisfies
\[T(\alpha) = Tr_{\mathbb{F}_{q^m}/\mathbb{F}_q}(\theta \alpha), \quad \forall \alpha \in \mathbb{F}_{q^m} \]

Proof. Since $\alpha_1, \ldots, \alpha_m$ form a basis of \mathbb{F}_{q^m} over \mathbb{F}_q so they are linearly independent over \mathbb{F}_q and so $\alpha_i \neq 0$ for $i = 1, 2, \ldots, m$. As a consequence, roots of all affine polynomials $A_i(x)$ are simple (since $\gcd(A_i(x), A_i'(x) = 1)$ and so roots of $A(x)$, if $\deg A(x) \geq 1$, must be simple.

Since T is a linear transformation from \mathbb{F}_{q^m} to \mathbb{F}_q so Theorem 1.1 guarantees the existence of $\theta \in \mathbb{F}_{q^m}$ such that
\[T(\alpha) = Tr_{\mathbb{F}_{q^m}/\mathbb{F}_q}(\theta \alpha), \quad \forall \alpha \in \mathbb{F}_{q^m} \]
In particular we have
\[a_i = T(\alpha_i) = Tr_{\mathbb{F}_{q^m}/\mathbb{F}_q}(\theta \alpha_i), \quad \text{for} \quad i = 1, 2, \ldots, m \]
(1)
i.e.
\[\alpha_i^{q^m-1} \theta^{q^m-1} + \alpha_i^{q^m-2} \theta^{q^m-2} + \cdots + \alpha_i \theta - a_i = 0, \quad \text{for} \quad i = 1, 2, \ldots, m \]
i.e.
\[A_i(\theta) = 0, \quad \text{for} \quad i = 1, 2, \ldots, m. \]

This shows that θ is a common root of $A_1(x), A_2(x), \ldots, A_m(x)$ in \mathbb{F}_{q^m} and as a consequence, θ is also a root of $A(x)$ in \mathbb{F}_{q^m}. Moreover θ must be a simple root of $A(x)$ as already pointed out.

Uniqueness of θ. Suppose $\omega, \omega \neq \theta$ be another root of $A(x)$ in \mathbb{F}_{q^m}. Since $A(x) = \gcd(A_1(x), \ldots, A_m(x))$ so we have
\[A_i(\omega) = 0, \quad \text{for} \quad i = 1, 2, \ldots, m. \]
i.e.
\[\alpha_i^{q^m-1} \omega^{q^m-1} + \alpha_i^{q^m-2} \omega^{q^m-2} + \cdots + \alpha_i \omega - a_i = 0, \quad \text{for} \quad i = 1, 2, \ldots, m \]
Using (1) this gives
\[Tr_{\mathbb{F}_{q^m}/\mathbb{F}_q}(\omega \alpha_i) = a_i = Tr_{\mathbb{F}_{q^m}/\mathbb{F}_q}(\theta \alpha_i), \quad \text{for} \quad i = 1, 2, \ldots, m \]
\[Tr_{F_q}((\omega - \theta)\alpha_i) = 0 \quad \forall i, 1 \leq i \leq m \quad (2) \]

Set \(\beta_i = (\omega - \theta)\alpha_i \). Since \(\omega - \theta \neq 0 \) so \(\beta_1, \ldots, \beta_m \) form another basis of \(F_q^m \) over \(F_q \). Now any \(u \in F_q^m \) can be written in the form \(u = c_1\beta_1 + \cdots + c_m\beta_m \), where \(c_1, \ldots, c_m \in F_q \). By linearity of trace and (2), we get \(Tr_{F_q^m/F_q}(u) = 0 \), which is a contradiction to the fact that trace map is onto. This completes the proof of the theorem. \(\square \)

We now give an example to verify Theorem 2.1.

Example 2.2 Let \(\alpha \in F_8 \) be a root of the irreducible polynomial \(f(x) = x^3 + x^2 + 1 \in F_2[x] \). In this example \(q = 2 \), and \(m = 3 \). We will use the polynomial basis \(\{1, \alpha, \alpha^2\} \) of \(F_8 \) over \(F_2 \) in our computation.

Since a linear transformation is completely described in terms of its values on basis elements [3], so for this example let us consider the linear transformation \(T : F_8 \to F_2 \) given by \(T(1) = 0, T(\alpha) = 1, \text{ and } T(\alpha^2) = 0 \).

We have
\[
A_1(x) = 1^4x^4 + 1^2x^2 + 1x - T(1)
= x^4 + x^2 + x
\]
\[
A_2(x) = \alpha^4x^4 + \alpha^2x^2 + \alpha x - T(\alpha)
= (1 + \alpha + \alpha^2)x^4 + \alpha^2x^2 + \alpha x + 1, \quad \text{and}
\]
\[
A_3(x) = (\alpha^2)^4x^4 + (\alpha^2)^2x^2 + \alpha^2x - T(\alpha^2)
= \alpha^4x^4 + (1 + \alpha + \alpha^2)x^2 + \alpha^2 x
\]

Therefore
\[
A(x) = \gcd(A_1(x), A_2(x), A_3(x))
= x + 1 + \alpha^2
\]

Since \(\theta \) is root of \(A(x) \), so \(\theta = 1 + \alpha^2 \).

Finally we verify that
\[
T(u) = Tr(\theta u), \quad \forall u \in F_8
\]

Simple calculation shows that \(Tr(\theta) = \theta + \theta^2 + \theta^4 = 0, Tr(\theta \alpha) = 1, \text{ and } Tr(\theta \alpha^2) = 0 \).

Every \(u \in F_8 \) is of the form \(u = a_0.1 + a_1.\alpha + a_2.\alpha^2 \) where \(a_0, a_1, a_2 \in F_2 \).

So
\[
T(u) = T(a_0.1 + a_1.\alpha + a_2.\alpha^2)
= a_0T(1) + a_1T(\alpha) + a_2T(\alpha^2)
= a_1.
\]
And

\[\text{Tr}(\theta u) = \text{Tr}(\theta(a_0,1 + a_1\alpha + a_2\alpha^2)) = a_0\text{Tr}(\theta) + a_1\text{Tr}(\theta\alpha) + a_2\text{Tr}(\theta\alpha^2) = a_0,0 + a_1,1 + a_2,0 = a_1. \]

Therefore \(T(u) = \text{Tr}(\theta u) \) for all \(u \in \mathbb{F}_8 \).

3 Conclusion

Both \(\mathbb{F}_{q^m} \) and \(L(\mathbb{F}_{q^m}, \mathbb{F}_q) \) (set of all linear transformations from \(\mathbb{F}_{q^m} \) to \(\mathbb{F}_q \)) form vector spaces over \(\mathbb{F}_q \) of finite dimension \(m \). Theoretically it is easy to check that the map \(\phi : \mathbb{F}_{q^m} \to L(\mathbb{F}_{q^m}, \mathbb{F}_q) \) given by \(\phi(\theta) = T_\theta \) (where \(T_\theta : \mathbb{F}_{q^m} \to \mathbb{F}_q \) is \(T_\theta(\alpha) = Tr_{q^m/q}(\theta\alpha) \) for \(\alpha \in \mathbb{F}_{q^m} \)) is a vector space isomorphism. Theorem 2.1 gives an explicit method of finding \(\phi^{-1}(T) \) (inverse image of \(T \) under the isomorphism \(\phi \)) for a given \(T \in L(\mathbb{F}_{q^m}, \mathbb{F}_q) \). We believe that this explicit construction can lead to some interesting results in concerned areas where only the existence nature of Theorem 1.1 have been used (see [4]).

ACKNOWLEDGEMENTS.

The work of the first author was partially supported by Council of Scientific and Industrial Research (CSIR) India, under the grant no. 09/086(0749)/2005-EMR-I.

References

Received: May, 2011