Finite Groups in which the Number of Subgroups of Possible Order is Less than or Equal 3

Chen Yanheng, Jiang Youyi

College of Mathematics and statistics
Chongqing Three Gorges University
Wanzhou, 404100, China
math_yan@126.com

Jia Songfang

College of Mathematics and statistics
Chongqing Three Gorges University
Wanzhou, 404100, China
jiasongfang@126.com

Abstract

In this work, the finite groups in which the number of subgroups of possible order is less than or equal to 3 are determined. In addition, the complete classification of the finite p–groups in which the number of subgroups of possible order is 1 or $p + 1$. Based on the computational results, we make the following conjecture:

If the finite group G has a subgroup of order k, then the number of subgroups of order k in G is not equal to 2.

Mathematics Subject Classification: 20D15

Keywords: p–group, number of the subgroups of same order, computational theorem, complete classification

1 Introduction

The enumeration problem of finite p–groups is important in the research of finite p–groups. It includes two parts: (a) study the number of subgroups, elements and subsets of finite p–groups, (b) study the structure or properties of finite p–groups by means of the number of subgroups. Some remarkable counting theorems are made in this field.
Theorem 1.1 (L. Sylow (1872), or see [1]) Assume G is a group of order p^n, $0 \leq k \leq n$. $s_k(G)$ denotes the number of subgroups of order p^k of G. Then $s_k(G) \equiv 1 \pmod{p}$.

Theorem 1.2 (see [2] Kulakoff) Assume G is a non-cyclic group of order p^n, $p > 2$. If $1 \leq k \leq n - 1$, then $s_k(G) \equiv 1 + p \pmod{p^2}$.

Theorem 1.3 (see [1]) Assume G is a group of order p^n, $0 \leq k \leq n$. If $s_1(G) = 1$, then G is a cyclic group, or a general quaternions group.

Theorem 1.4 (see [1]) Assume G is a group of order p^n, $0 \leq k \leq n$. If $s_k(G) = 1$, $2 \leq k \leq n - 1$, then G is a cyclic group.

Obviously, studying the structure of finite $p-$groups in which the numbers of subgroups of possible order is a pre-given figure is an interesting question. In fact, by P. Hall’s enumeration principle, groups of order p^n in which the number of nontrivial subgroups of possible order is equal to $1 + p$ are classified [3]. In this work, we class finite groups (not only finite $p-$groups) in which the number of subgroups of possible order is less than or equal 3. In addition, we also give out the complete classification of finite $p-$groups in which the number of subgroups of possible order is 1 or $p + 1$.

For convenience, let $s_k(G)$ denote the number of subgroups of order p^k of a finite $p-$group G; n_p to denote the number of the Sylow $p-$subgroup of a finite non $p-$group; $n(G)$ to denote the set of the number of subgroups of possible order of a finite group.

The notations and symbols in this paper are referred to [4].

2 Preliminary Notes

To draw the conclusion, some lemmas are firstly given as follows.

Lemma 2.1 (see [4]) Assume G is not a finite abelian group and all its Sylow subgroups are cyclic. Then G is

$$G = < a, b >, a^m = b^n = 1, b^{-1}ab = a^r, ((r - 1)n, m) = 1, r^n \equiv 1 \pmod{m}, |G| = nm.$$ where m, n, r are positive integers.

Lemma 2.2 (see [4]) Assume G is a finite which is not a $p-$group and all its subgroups are cyclic. Then G is

$$G = < a, b >, a^p = b^q = 1, b^{-1}ab = a^r, r \not\equiv 1 \pmod{p}, r^q \equiv 1 \pmod{p}$$ where p, q are pairwise different prime numbers and m, r are positive integers.

Lemma 2.3 Assume G is a finite $p-$group. If the number of subgroups of possible order of G is less or equal to 3, then G is a cyclic group, or a non cyclic 2-group.
The number of subgroups of finite group

Proof Suppose that G is not a cyclic p–group and $p \geq 3$, then G must have an abelian subgroup with type (p, p). Thus, the number of subgroups of order p in G is more than $p+1 > 3$, which is contradicted with the assumption. Hence G is a cyclic group, or a non cyclic 2–group.

Lemma 2.4 Assume G is a finite which is not a p–group. If the number of subgroups possible order of G is less or equal to 3, then all Sylow subgroups of G with odd order are cyclic and normal.

Proof Suppose $n_p > 1$ and $p \geq 3$. If $n_p = 2$, then $n_p \equiv 1(mod \ p)$, which is contradicted with Sylow Theorem. If $n_p = 3$, then $n_p \equiv 1(mod \ p)$, hence $p = 2$, which is contradicted with assumption $p \geq 3$. Thus, all Sylow subgroups of G with odd order are normal. By lemma2.3, all Sylow subgroups of G with odd order are cyclic.

3 Main Results

Theorem 3.1 Assume G is a finite p–group. If $n(G) = \{1, p + 1\}$, then G is one of the following cases:

(i) Q_8;
(ii) an abelian group with type $(2^{n-1}, 2)$ where $n \geq 2$;
(iii) $G = \langle a, b \rangle, a^{p^n-1} = 1, b^p = 1, b^{-1}ab = a^{1+p^n-2}$, where p is odd prime and $n \geq 3$;
(iv) $G = \langle a, b \rangle, a^{2^{n-1}} = 1, b^2 = 1, b^{-1}ab = a^{1+2^{n-2}}$, where $p = 2$, and $n \geq 4$.

Proof Now we prove the theorem by three cases.

(i) If $s_1(G) = 1$, by theorem1.3, G is a cyclic group, or a general quaternions group. But G has $p + 1$ subgroups of order p^k, so G is a general quaternions group, not a cyclic group. By the theorem 1 of [3], we know G is Q_8.

(ii) If k is a positive integer and $n > k \geq 2$, $s_k(G) = 1$, by theorem 1.4, G is a cyclic group. Thus $n(G) = \{1\}$, which is contradicted with assumption.

(iii) If the number of nontrivial subgroups of possible order of G is equal to $1 + p$, by the theorem 2 of [3], G is one case of (2), (3), or (4).

Theorem 3.2 If the number of subgroups of possible order of a finite group G is less than or equal to 3, then G is one of the following cases:

I. $n(G) = \{1\}$
 (1) G is a finite cyclic group.
II. $n(G) = \{1, 3\}$ and G is a finite p–group
 (2) Q_8;
 (3) an abelian group with type $(2^{n-1}, 2)$;
 (4) $G = \langle a, b \rangle, a^{2^{n-1}} = 1, b^2 = 1, b^{-1}ab = a^{1+2^{n-2}}$, where $n \geq 4$.
III. $n(G) = \{1, 3\}$, G is a finite but not a p–group and the Sylow 2–subgroup of G is normal.
(5) \(Q_8 \times < a >, 2 \nmid o(a)\);
(6) \(P \times < u >, 2 \nmid o(u)\), \(P\) is an abelian group with type \((2^{n-1}, 2)\);
(7) \(P \times < v >, 2 \nmid o(v)\), \(P\) is one group of (4).

IV. \(n(G) = \{1, 3\}\), \(G\) is a finite but not a \(p\)-group and the Sylow 2-subgroup of \(G\) is not normal

(8) \(G = (P \times P_1) \times < u >, \quad P = < a >, \quad P_1 = < b >, \quad o(a) = 2^n, \quad n \geq 1, \quad o(b) = 3, \quad 2 \nmid o(u), \quad 3 \nmid o(u)\).

Where \(n(G)\) is the set of the number of subgroups of \(G\).

Proof Now we prove the theorem case by case of possible order of \(G\).

Case1 \(n(G) = \{1\}\). This case is trivial and it is easy to know \(G\) is a finite cyclic group.

Case2 \(n(G) = \{1, 2\}\). We assert that no finite group \(G\) satisfies \(n(G) = \{1, 2\}\).

If \(G\) is a \(p\)-group, by lemma2.3, \(G\) is a cyclic group, or a non cyclic 2-group.
By case1, \(G\) is a non cyclic 2-group. Hence it exists \(k, 1 \leq k < n, s_k(G) = 2\).
By theorem1.1, which is impossible.

If Assume \(G\) is a finite but not a \(p\)-group, by lemma2.4, all Sylow subgroups of \(G\) with odd order are cyclic and normal. From the proof above, we know the Sylow 2-subgroup of \(G\) is cyclic and normal. Thus \(G\) is a cyclic group. By case1, which is contradicted with \(n(G) = \{1, 2\}\).

Case3 \(n(G) = \{1, 3\}\).

If \(G\) is a finite \(p\)-group, by theorem3.1, \(G\) is one of following three types:
(2) \(Q_8\);
(3) an abelian group with type \((2^{n-1}, 2)\);
(4) \(G = < a, b >, \quad a^{2^{n-1}} = 1, \quad b^2 = 1, \quad b^{-1}ab = a^{1+2^{n-2}}, \quad \text{where } n \geq 4\).

If \(G\) is a finite but not a \(p\)-group, by lemma2.4, all Sylow subgroups of \(G\) with odd order are cyclic and normal. Next part, we prove the case on whether the Sylow 2-subgroup of \(G\) is normal or not.

i) If the Sylow 2-subgroup of \(G\) is normal, by case1, the Sylow 2-subgroup of \(G\) is not a cyclic subgroup. From the proof above, the Sylow 2-subgroup of \(G\) is one case of (2), (3), or (4). Thus, \(G\) is one of the following cases:
(5) \(Q_8 \times < a >, \quad 2 \nmid o(a)\);
(6) \(P \times < u >, \quad 2 \nmid o(u)\), \(P\) is an abelian group with type \((2^{n-1}, 2)\);
(7) \(P \times < v >, \quad 2 \nmid o(v)\), \(P\) is one group of (4).

ii) If the Sylow 2-subgroup of \(G\) is non-normal, then we assert that the Sylow 2-subgroup of \(G\) is a cyclic subgroup. Suppose that the Sylow 2-subgroup of \(G\) is not a cyclic subgroup. From the proof above, we know that the Sylow 2-subgroup of \(G\) is isomorphic to one case of (2), (3), or (4). So we can assume that the three types of the Sylow 2-subgroups of \(G\) are \(P_1, P_2,\) and \(P_3\). Clearly, they are isomorphic to each other. If they are isomorphic to \(Q_8\), then each of \(P_1, P_2,\) and \(P_3\) has three subgroups of order 4, respectively. By the \(n(G) = \{1, 3\}\), we know the subgroups of order 4 are identi-
cal. Thus, \(P_1, P_2, \) and \(P_3 \) are the same group, which is contradicted with the assumption.

Similarly, if \(P_1, P_2, \) and \(P_3 \) are isomorphic to (3) or (4), we can also get a contradiction.

Let \(G = P \times T \), \(P \) is a Sylow 2–subgroup of \(G \), \(T = P_1 \times P_2 \times \cdots \times P_t \), \(t \geq 1 \), \(P_i \) is a Sylow \(p_i \)–subgroup of \(G \), \(p_i \) is an odd prime, \(i = 1, 2, \cdots, t \). Without loss of generality, \(P_1 \) is a Sylow 3–subgroup of \(G \). Assume \(P \) acts nontrivially on \(P_1, P_2 \), then \(< P, P_1 > = P \times P_1, < P, P_2 > = P \times P_2 \) have three Sylow 2–subgroups, respectively. Because \(n_2(P \times P_1) = 3 \), \(n_2(P \times P_2) = 3 \), so \(3 \mid |P_1|, 3 \mid |P_2| \). This means that \(P_1, P_2 \) are Sylow 3–subgroup of \(G \), which is a contradiction. So \(P \) just acts nontrivially on \(P_1 \) and trivially on \(P_2, \cdots, P_t \), which means \(G = \langle P \times P_1 \rangle \times P_2 \times \cdots \times P_t \).

Next considering the structure of \(P \times P_1 \), and prove \(n(P \times P_1) = \{1, 3\} \). Let \(G = P \times P_1, P = \langle a >, P_1 = \langle b >, o(a) = 2^n, o(b) = 3^m, n, m \geq 1 \). Because \(P_1 \) is a normal subgroup of \(G \) and \(P \) is not, hence \(a^{-1}ba = b^r \), and \(r \not\equiv 1(\text{mod } 3^m) \).

Further more \(n_2(G) = 3 \), \(|G : N_G(P)| = 3 \), so \(|N_G(P)| = 2^n 3^{m-1} \), which means \(N_G(P) = P \times < b^3 > \).

Now we prove \(m = 1 \). Assume \(m > 1 \), then \(b^3 = a^{-1}b^3a = (a^{-1}ba)^3 \), \(b^{3(r-1)} = 1 \). Thus \(r \equiv 1(\text{mod } 3^{m-1}) \). By lemma2.1, \(((r-1)2^n, (3^m)) = 1 \). It means \(m = 1 \), which is a contradiction.

Now we prove \(r = -1 \). Because \(r \not\equiv 1(\text{mod } 3^m) \), hence \(r \equiv 0 \), or \(-1(\text{mod } 3^m) \). If \(r \equiv 0(\text{mod } 3^m) \), then \(a^{-1}ba = b^r = 1 \), which is a contradiction. Thus, \(r \equiv -1(\text{mod } 3^m) \), and we can obtain \(r = -1 \).

Let \(G = \langle a, b >, o(a) = 2^n, o(b) = 3, a^{-1}ba = b^{-1}, n \geq 1 \). By lemma2.2, all subgroups of \(G \) are cyclic, and also \(a^{-2}ba^2 = a^{-1}(a^{-1}ba)a = a^{-1}b^2a = b, (ab)^2 = a(ba)b = aab^{-1}b = a^2, (ab^2)^2 = ab^2ab^2 = ab(ba)bb = abab^{-1}bb = (ab)^2 = a^2 \), these mean \(o(a^2b) = 2^n 3, o(a) = o(ab^2) = o(ab) = 2^n \). Thus,

the maximal subgroups of \(G \) are \(\langle a^2b >, < a >, < ab^2 >, < ab > \), and also \((ab^2)^2 = (ab)^2 = a^2 \), hence \(\Phi(G) = \langle a^2 > \). From all discussion above, we can get the subgroups of \(G \) of order \(2^{n-1}3 \) are \(\langle a^2b >, i = 1, 2, \cdots, n \); the subgroups of \(G \) of order \(2^n \) are \(\langle a >, < ab^2 >, < ab > \); the subgroups of \(G \) of order \(2^i \) are \(\langle a^i >, i = 1, 2, \cdots, n \). Thus, \(n(P_1 \times P) = \{1, 3\} \).

Case4 \(n(G) = \{1, 2, 3\} \). We assert that no finite group \(G \) satisfies \(n(G) = \{1, 2, 3\} \).

If \(G \) is a \(p \)–group, by lemma2.3, \(G \) is a cyclic group, or a non cyclic 2–group. By case1, we know \(G \) is a non cyclic 2–group. Thus, it exists \(k, 1 \leq k < n \), and \(s_k(G) = 2 \). By theorem1.1, this is impossible.

If \(G \) is a finite which is not a \(p \)–group, by lemma2.4, all Sylow subgroups of \(G \) of odd order are cyclic and normal. Next we prove the case on whether the Sylow 2–subgroup of \(G \) is normal or not.

i) If the Sylow 2–subgroup of \(G \) is normal, noting \(P \), by discussion of case3 above, we know that \(n(P) = \{1, 3\} \). Hence \(n(G) = \{1, 3\} \), which is contra-
dicted with \(n(G) = \{1, 2, 3\} \).

ii) If the Sylow 2−subgroup of \(G \) is not normal, then \(n_2 = 2 \), or 3. If \(n_2 = 2 \), then \(n_2 = 2 \equiv 0 \pmod{2} \), which is a contraction. Hence \(n_2 = 3 \). By discussion of case 3 above, we know that \(n(G) = \{1, 3\} \), which is contradicted with \(n(G) = \{1, 2, 3\} \).

We can easily justify that all groups we obtain satisfy \(n(G) = \{1, 3\} \).

From discussion of case 2 and case 3, we know that no finite group satisfies \(n(G) = \{1, 2\} \), and \(n(G) = \{1, 2, 3\} \), but existing finite groups which satisfy \(n(G) = \{1, 3\} \). Thus we make a open problem in the end of this work as follows:

If the finite group \(G \) has a subgroups with order \(k \), then the number of subgroup with order \(k \) is not equal to 2.

Acknowledgements. This work is supported by Youth Foundation of Chongqing Three Gorges University (Grant No. 10QN-27), and by the Natural Science Foundation of Chongqing Municipal Education Commission (No: KJ111107).

References

Received: May, 2011