On Special Types of Putcha Semigroups whose Subgroups Belong to a Given Variety of Groups\(^1\)

Attila Nagy

Department of Algebra
Institute of Mathematics
Budapest University of Technology and Economics
1521 Budapest, Pf. 91, Hungary
nagyat@math.bme.hu

Abstract

A semigroup \(S\) is called a Putcha semigroup if, for every \(a, b \in S\), the assumption \(b \in S^1aS^1\) implies \(b^m \in S^1a^2S^1\) for some positive integer \(m\).

In this paper we characterize some special types of Putcha semigroups whose subgroups belong to a given variety of groups.

Mathematics Subject Classification: 20M11, 20M25

Keywords: Putcha semigroups, the least semilattice congruence of semigroups, Rhodes radical of finite semigroups

1 Introduction

For an arbitrary semigroup \(S\), let \(E(S)\) denote the set of all idempotent elements of \(S\). If \(e \in E(S)\) then \(eSe\) is the greatest submonoid and \(G_e = \{x \in eSe : (\exists y \in eSe) \ xy = yx = e\}\) is the greatest subgroup of \(S\) in which \(e\) is the identity element. It is known that, for every \(e, f \in E(S)\), either \(G_e \cap G_f = \emptyset\) (if \(e \neq f\)) or \(G_e = G_f\) (if \(e = f\)).

If \(H\) is a pseudovariety of finite groups, then the set \(\overline{H}\) of all finite semigroups whose subgroups belong to \(H\) is also a pseudovariety (see [5]). In [1], the authors were concerned with the question of how to describe \(\overline{H}\) syntactically, given a good syntactic description of the pseudovariety \(H\).

In our present paper we concentrate our attention to some special types of not necessarily finite semigroups whose subgroups belong to a given variety of groups. We characterize them by the help of their least semilattice congruence.

\(^1\)Research supported by the Hungarian NFSR grant No. K77476.
A semigroup S is called a Putcha semigroup if, for every $a, b \in S$, the assumption $b \in S^1aS^1$ implies $b^m \in S^1a^2S^1$ for some positive integer m; with other words, the assumption that a divides b implies that a^2 divides some power of b.

In this paper we deal with some special types of Putcha semigroups whose subgroups belong to a given variety of groups.

2 Preliminaries

A semigroup S is called a band if every element of S is an idempotent element. A semigroup L is called a left zero semigroup if it satisfies the identity $ab = a$ ($a, b \in L$). The notion of the right zero semigroup is the dual of the notion of the left zero one. A semigroup is called a rectangular band if it is a direct product of a left zero semigroup and a right zero semigroup.

For an arbitrary semigroup S, the set $E(S)$ of all idempotent elements of S is a partially ordered set under the following ordering: $e \leq f$ if and only if $ef = fe = e$ ($e, f \in E(S)$). A semigroup S is called a completely simple semigroup if it is simple and contains an idempotent element which is minimal in the above ordering of the idempotents of S.

Result 2.1 (Corollary 2.52b of [3]) Every completely simple semigroup S is a rectangular band $B = I \times J$ of groups $G_{i,j}$ ($i \in I, j \in J$), that is, S is a union of disjoint subgroups $G_{i,j}$ ($i \in I, j \in J$) such that $G_{i,j}G_{m,n} \subseteq G_{i,n}$ for every $i, m \in I$ and $j, n \in J$.

A semigroup S is called a rectangular group if it is a direct product of a rectangular band and a group G; if G is commutative then S is called a rectangular abelian group.

A commutative band is called a semilattice. A congruence α of a semigroup S is called a semilattice congruence if the factor semigroup $I = S/\alpha$ is a semilattice. In this case the α-classes S_i ($i \in I$) are subsemigroups of S; we also say that S is a semilattice I of the subsemigroups S_i ($i \in I$). A semigroup S is called semilattice indecomposable if the universal relation of S is the only semilattice congruence of S.

Result 2.2 (Proposition I.8.3, Corollary I.8.4 and Lemma L.8.6 of [11]) Every semigroup has a least semilattice congruence η; the η-classes are semilattice indecomposable semigroups. With other words, every semigroup is decomposable into a semilattice of semilattice indecomposable semigroups.

A semigroup S is called an archimedean semigroup if, for every element $a, b \in S$, there are positive integers m and n such that $a^n \in SbS$ and $b^m \in SaS$;
with other words, for every two elements of S, both of them divide some power of the other. It is known that every archimedean semigroup is semilattice indecomposable (see, for example, the proof of Theorem 2.1 of [7]).

Result 2.3 (Theorem 2.1 of [12] or Theorem 2.1 of [7]) A semigroup S is a semilattice of archimedean semigroups if and only if it is a Putcha semigroup. In such a case the corresponding semilattice congruence equals $\eta = \{(a, b) \in S \times S : a^n \in SbS, b^m \in SaS$ for some positive integers $m, n\}$ and is the least semilattice congruence on S.

Result 2.4 (Theorem 3.2 of [4] or Theorem 2.2 of [7]) A semigroup S is archimedean and contains at least one idempotent element if and only if it is an ideal extension of a simple semigroup containing an idempotent element by a nil semigroup.

3 The least semilattice congruence

Let H denote a given variety of groups. A congruence α of a semigroup S will be called an LH-congruence if every α-class T that is a subsemigroup of S contains an idempotent element, and the local submonoid eTe belongs to the variety H for every idempotent element e of T.

Theorem 3.1 Let H be a given variety of groups and S a semigroup which is a semilattice Y of subsemigroups S_α ($\alpha \in Y$) such that, for every $\alpha \in Y$, the subsemigroup S_α is an ideal extension of a completely simple semigroup by a nil semigroup. Then the subgroups of S belong to H if and only if the least semilattice congruence of S is a maximal LH-congruence of S.

Proof. Let S be a semigroup which is a semilattice Y of subsemigroups S_α ($\alpha \in Y$) such that, for every $\alpha \in Y$, the subsemigroup S_α is an ideal extension of a completely simple semigroup K_α by a nil semigroup. It is clear that the subsemigroups S_α ($\alpha \in Y$) are archimedean semigroups. Thus, by Result 2.3, S is a Putcha semigroup and the subsemigroups S_α ($\alpha \in Y$) are the η-classes of S, where η denotes the least semilattice congruence of S.

Let H be a given variety of groups. Assume that the subgroups of S belong to H. We show that η is a maximal LH congruence of S. Let $\alpha \in Y$ be arbitrary. As K_α is completely simple, S_α contains an idempotent element. We show that $eS_\alpha e \in H$. By Result 2.1, K_α is a rectangular band $B = I \times J$ of its maximal subgroups $G_{i,j}$ ($i \in I, j \in J$), that is, K_α is a union of disjoint subgroups $G_{i,j}$ ($i \in I, j \in J$) such that $G_{i,j}G_{m,n} \subseteq G_{i,j}$ for every $i, m \in I$ and $j, n \in J$. The subgroups $G_{i,j}$ ($i \in I, j \in J$) are maximal in K_α and also in S_α, because the Rees factor semigroup of S_α defined by K_α is nil. By Corollary
2.1 of [7], every subgroup of S is contained by some η-class of S. Thus the subgroups $G_{i,j}$ \((i \in I, j \in J)\) are the maximal subgroups of S and so e is the identity element of some maximal subgroup G_{i_0,j_0}. Then

$$G_{i_0,j_0} = eG_{i_0,j_0}e \subseteq eS_\alpha e = e(eS_\alpha e)e \subseteq eK_\alpha e \subseteq G_{i_0,j_0}K_\alpha G_{i_0,j_0} \subseteq G_{i_0,j_0},$$

because e is in the ideal K_α of S_α, and K_α is a rectangular band of the subgroups $G_{i,j}$ \((i \in I, j \in J)\). Thus $eS_\alpha e = G_{i_0,j_0} \in \mathbf{H}$. Consequently, η is an \textbf{LH}-congruence. In the next, we show that η is a maximal \textbf{LH}-congruence. Let ξ be an arbitrary \textbf{LH}-congruence of S with $\eta \subseteq \xi$. We show that $\eta = \xi$. Let S_α and S_β \((\alpha, \beta \in Y)\) be arbitrary η-classes of S. Assume that there is a ξ-class T of S such that $S_\alpha, S_\beta \subseteq T$. Let e and f be arbitrary idempotent elements of S_α and S_β, respectively. As ξ is an \textbf{LH}-congruence, eTe and fTf are groups with the identity element e and f, respectively. As efe is in the group eTe, there is an element $x \in eTe$ (the inverse of efe in eTe) such that $x(efe) = e$ which means that $e \in SfS$, that is, f divides e. We can prove, in a similar way, that e divides f. Then, by the definition of η (see above), the idempotent elements e and f are in the same η-class of S. Thus $\alpha = \beta$. Consequently $\eta = \xi$ which implies that η is a maximal \textbf{LH}-congruence of S.

Conversely, assume that the least semilattice congruence η of S is a maximal \textbf{LH}-congruence. Let G be an arbitrary subgroup of S. Use the notations of the above part of the proof. By Corollary 2.1 of [7], G is contained by an η-class S_α \((\alpha \in Y)\) of S; S_α is an ideal extension of K_α by a nil semigroup, and so $G \subseteq K_\alpha$; by Result 2.1, K_α is a rectangular band $B = I \times J$ of its (maximal) subgroups $G_{i,j}$ \((i \in I, j \in J)\) and so $G \subseteq G_{i_0,j_0}$ for some $i_0 \in I$ and $j_0 \in J$. Let e denote the identity element of G_{i_0,j_0}. Then, as above,

$$G_{i_0,j_0} = eK_\alpha e = eS_\alpha e \in \mathbf{H}.$$

Thus G belongs to \mathbf{H}. The theorem is proved.

An element a of a semigroup S is called periodic, if there are positive integers $n \neq k$ such that $a^n = a^k$. It is known that if a is a periodic element of a semigroup S then $\langle a \rangle = \{a, a^2, \ldots, a^i, a^{i+1}, \ldots, a^{i+m-1}\}$ is the subsemigroup of S generated by a, in which $K_a = \{a^i, \ldots, a^{i+m-1}\}$ is a subgroup of S; here i and m denote the index and the period of a, respectively. It is clear that an element a of a semigroup S is periodic if and only if there is a positive integer n such that a^n is an idempotent element of S. A semigroup S is called a periodic semigroup if every element of S is periodic.

\textbf{Theorem 3.2} Let \mathbf{H} be a given variety of groups. In a periodic Putcha semigroup S containing finite many idempotent elements, the subgroups of S belong to \mathbf{H} if and only if the least semilattice congruence of S is a maximal \textbf{LH}-congruence of S.

Proof. Let S be a periodic Putcha semigroup in which $E(S)$ is finite. By Result 2.3, S is a semilattice Y of archimedean semigroups S_{α} ($\alpha \in Y$). Let $\alpha \in Y$ be an arbitrary element. As S_{α} is periodic, it contains at least one idempotent element. As S_{α} is also archimedean, Result 2.4 implies that S_{α} is an ideal extension of a simple semigroup K_{α} containing at least one idempotent element by a nil semigroup. As $E(S)$ is finite, the simple semigroup K_{α} contains an idempotent element which is minimal in the ordering of idempotents of K_{α}. Thus K_{α} is a completely simple semigroup. Then S is a semilattice Y of semigroups S_{α} ($\alpha \in Y$) such that every subsemigroup S_{α} is an ideal extension of a completely simple semigroup by a nil semigroup. Thus our assertion follows from Theorem 3.1.

A semigroup S is called a left [right] Putcha semigroup if, for every $x, y \in S$, the assumption $y \in xS^1 [y \in S^1 x]$ implies $y^m \in x^2S^1 [y^m \in S^1 x^2]$ for some positive integer m.

Result 3.3 (Lemma 2.1 of [6] or Lemma 2.1 of [7]) S is a left [right] Putcha semigroup if and only if, for any $x, y \in S$ and for any positive integer n, there is a positive integer m such that $(xy)^m \in x^nS^1 [(xy)^m \in S^1 y^n]$.

Result 3.4 (Theorem 2.6 of [6] or Theorem 2.4 of [7]) A semigroup is an archimedean left and right Putcha semigroup containing at least one idempotent element if and only if it is a retract ideal extension ([7]) of a completely simple semigroup by a nil semigroup.

Theorem 3.5 Let H be a given variety of groups. In a periodic left and right Putcha semigroup S, the subgroups of S belong to H if and only if the least semilattice congruence of S is a maximal LH_{α}-congruence of S.

Proof. Let S be a periodic left and right Putcha semigroup. By Lemma 2.2 of [7], S is a Putcha semigroup, and so, by Result 2.3, it is a semilattice Y of archimedean semigroups S_{α} ($\alpha \in Y$). Let $\alpha \in Y$ be an arbitrary element. We show that S_{α} is a left and right Putcha semigroup. Let n be a positive integer and $x, y \in S_{\alpha}$ be arbitrary elements. As S is a left Putcha semigroup, by Result 3.3, there is a positive integer m and an element $z \in S$ such that $(xy)^m = x^nz$. Let β be the element of Y such that $z \in S_\beta$. It is clear that $\beta \alpha = \alpha \beta = \alpha$. Then $(xy)^{m+1} = x^nz(xy)$ and $z(xy) \in S_\beta S_{\alpha} \subseteq S_{\beta \alpha} = S_{\alpha}$. Thus $(xy)^{m+1} \in x^nS_{\alpha}$. Then, by Result 3.3, S_{α} is a left Putcha semigroup.

We can prove, in a similar way, that S_{α} is a right Putcha semigroup. As S is a periodic semigroup, the left and right Putcha archimedean semigroup S_{α} contains an idempotent element. Then, by Result 3.4, S_{α} is an ideal extension of a completely simple semigroup by a nil semigroup. Thus S is a semilattice Y of the semigroups S_{α} such that, for every $\alpha \in Y$, the subsemigroup S_{α} is...
an ideal extension of a completely simple semigroup by a nil semigroup. Thus our assertion follows from Theorem 3.1.

A semigroup S is called a permutative semigroup if there is a positive integer n and a non-identity permutation of $\{1, \ldots, n\}$ such that S satisfies the identity $x_1 \ldots x_n = x_{\sigma(1)} \ldots x_{\sigma(n)}$.

Result 3.6 (Corollary 1.4 of [9]) Every permutative semigroup is a semilattice of permutative archimedean semigroups.

Result 3.7 (Theorem 2 of [8]) Every permutative archimedean semigroup containing at least one idempotent element is an ideal extension of a rectangular abelian group by a nil semigroup.

Theorem 3.8 Let H be a given variety of groups. In a periodic permutative semigroup S, the subgroups of S belong to H if and only if the least semilattice congruence of S is a maximal LH-congruence of S.

Proof. Let S be a periodic permutative semigroup. By Result 3.6, S is a semilattice Y of permutative archimedean semigroups S_α ($\alpha \in Y$); the corresponding congruence η is the least semilattice congruence of S (see Result 2.3). As S is periodic, every S_α contains at least one idempotent element. Then, by Result 3.7, every S_α is an ideal extension of a rectangular abelian group by a nil semigroup. Then our assertion follows from Theorem 3.1.

4 Corollaries

In this section, we present some corollaries on the connection between the Rhodes radical and the least semilattice congruence of finite Putcha semigroups.

Let K be a field and S a finite semigroup. The semigroup algebra of S over K is denoted by KS. Recall that this is a K-vector space with basis S and the multiplication extending the multiplication in S. As the basis of KS is finite, the semigroup algebra KS has a largest nilpotent ideal. This will be denoted by $\text{Rad}(S)$, and is called the Jacobson radical of KS.

Consider the composite mapping $K \mapsto KS \mapsto KS/\text{Rad}(KS)$; this is a morphism of semigroups where the latter two are viewed with respect to their multiplicative structure. The associated congruence $\text{Rad}_K(S)$ on S is called the Rhodes radical of S.

For an arbitrary field K, let G_K denote the variety I or G_p depending on the characteristic of K, where I is the variety consisting of only the trivial semigroup, and G_p is the variety of p-groups (p is a prime). Let $G_K = I$ if $\text{char}K = 0$, and let $G_K = G_p$ if $\text{char}K = p$.
Result 4.1 (Theorem 3.6 of [2]) The Rhodes radical of a finite semigroup S over a field K is the largest LG_K-congruence on S.

Corollary 4.2 The Rhodes radical of a finite Putcha semigroup S over a field K equals the least semilattice congruence of S if and only if every subgroup of S belongs to the variety G_K.

Proof By Result 4.1 and Theorem 3.2, it is obvious.

A semigroup is called a trivial semigroup if it contains only one element.

Corollary 4.3 The least semilattice congruence of a finite Putcha semigroup equals the Rhodes radical of S over an arbitrary field if and only if every subgroup of S is trivial.

Proof. By Corollary 4.2, it is evident.

Corollary 4.4 In an arbitrary finite band, the least semilattice congruence equals the Rhodes radical of S over an arbitrary field.

Proof. As every band is a Putcha semigroup, the assertion follows from Corollary 4.3.

Corollary 4.5 The least semilattice congruence of a finite permutative semigroup S equals the Rhodes radical of S over an arbitrary field if and only if S is a semilattice of semigroups which are ideal extension of a rectangular band by a nil semigroup.

Proof. As every permutative semigroup S is a semilattice of permutative archimedean semigroups (see Result 3.6) and every finite permutative archimedean semigroup is an ideal extension of a rectangular abelian group by a nil semigroup (see Result 3.7), our assertion follows from Theorem 3.5, Result 4.1 and Corollary 4.3.

Corollary 4.6 The least semilattice congruence of a finite commutative semigroup S equals the Rhodes radical of S over every field if and only if S is a semilattice of commutative nil semigroups.

Proof. As a commutative semigroup is permutative and a rectangular band is commutative if and only if it is trivial, our assertion follows from Corollary 4.5.
References

[10] Petrich, M., Introductions to Semigroups, Merrill Books, Columbus, Ohio, 1973

[12] Putcha, M. S., Semilattice Decomposition of Semigroups, Semigroup Forum, 6(1973), 12-34

Received: December, 2010