Weak Armendariz Skew Polynomial Rings

A. Mousavia, F. Keshavarzb, M. Rasulic and A. Alhevazd

a Department of Mathematics, Islamic Azad University, South Tehran Branch, Tehran, Iran.
b Member of Young Researchers Club, Islamic Azad University, North Tehran Branch, Tehran, Iran.
c Department of Mathematics, Isfahan University of Technology, P.O.Box: 84156-83111, Isfahan, Iran.
d Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran, P.O. Box 14115-134.

\texttt{fatemeh.keshavarz.2003@gmail.com. a.alhevaz@yahoo.com. m.rasuli@yahoo.com.}

Corresponding author. \texttt{a.mousavi@azad.ac.ir}

Abstract

A ring R is called weak Armendariz if whenever the product of any two polynomials in $R[x]$ over R is zero, then the product of any pair of coefficients from the two polynomials be a nilpotent element of R. For a ring endomorphism α, we introduce the notion of α-weak Armendariz rings by considering the polynomials in the skew polynomial ring $R[x; \alpha]$ instead of $R[x]$, which are a generalization of weak Armendariz rings and α-Armendariz rings. Basic properties of α-weak Armendariz rings are observed, and connections of properties of an α-weak Armendariz ring R with those of $R[x; \alpha]$ are investigated. As a consequence our results improve not only some results of Liu [8], but also some known results on Armendariz rings.

Mathematics Subject Classification: 16S36; 16D25.

Keywords: weak Armendariz ring, semicommutative ring, α-compatible ring, skew polynomial ring.

Throughout this paper R denotes an associative ring with unity. For a ring R, we denote by $\text{nil}(R)$ the set of all nilpotent elements of R and by $R[x]$ the polynomial ring with an indeterminate x over R.

By [11], a ring R is called an Armendariz ring if whenever $f(x)g(x) = 0$ where $f(x) = a_0 + a_1 x + \cdots + a_m x^m$, $g(x) = b_0 + b_1 x + \cdots + b_n x^n \in R[x]$, then $a_i b_j = 0$ for each i, j. The name Armendariz ring is chosen because Armendariz
[2] had noted that a reduced ring (i.e., a ring without nonzero nilpotent elements) satisfies this condition. Recall that a ring R is called reversible if $ab = 0$ implies $ba = 0$, for all $a, b \in R$; R is called semicommutative if for all $a, b \in R$, $ab = 0$ implies $aRb = 0$. Reduced rings are clearly reversible and reversible rings are semicommutative, but the converse is not true in general[10].

Liu and Zhao [8] have studied a generalization of Armendariz rings, which they called weak Armendariz rings. A ring R is called a weak-Armendariz ring if for each $a, b \in R$, if whenever polynomials $f(x) = a_0 + a_1 x + \cdots + a_m x^m, g(x) = b_0 + b_1 x + \cdots + b_n x^n \in R[x]$ satisfy $f(x)g(x) = 0$, then $a_i b_j \in \text{nil}(R)$ for each i, j. Each semicommutative ring is weak Armendariz by [8] and so weak Armendariz rings are a common generalization of semicommutative rings and Armendariz rings.

The Armendariz property of a ring was extended to one of skew polynomials [4,5]. For an endomorphism α of a ring R, the skew polynomial ring $R[x; \alpha]$ consists of the polynomials in x with coefficients in R written on the left, subject to the relation $x r = \alpha(r)x$ for all $r \in R$. A ring R is called α-Armendariz (resp., α-skew Armendariz) if for $f(x) = a_0 + a_1 x + \cdots + a_m x^m, g(x) = b_0 + b_1 x + \cdots + b_n x^n \in R[x]$ satisfy $f(x)g(x) = 0$, then $a_i b_j = 0$ (resp., $a_i \alpha^j(b_j) = 0$) for all $0 \leq i \leq m$ and $0 \leq j \leq n$ [5, Definition 1.1](resp., [4, Definition]). According to Hashemi and Moussavi [3], a ring R is said to be α-compatible if for each $a, b \in R$, $ab = 0 \iff a \alpha(b) = 0$. For α-compatible rings the above mentioned concepts are equivalent. According to Krempa [6], an endomorphism α of a ring R is called to be rigid if $a \alpha(a) = 0$ implies $a = 0$ for $a \in R$. A ring R is called α-rigid if there exist a rigid endomorphism α of R. By [3, Lemma 2.2], a ring R is α-rigid if and only if R is α-compatible and reduced. Also by [4, Proposition 3], if R is α-rigid ring, then $R[x; \alpha]$ is reduced.

We are motivated to introduce the notion of α-weak Armendariz ring R with respect to an endomorphism α of R. This notion extends both ring weak Armendariz rings and α-Armendariz rings. We do this by considering the weak Armendariz condition on polynomials in $R[x; \alpha]$ instead of $R[x]$. This provides us with an opportunity to study weak Armendariz rings in a general setting, and several known results on weak Armendariz rings are obtained as corollaries. We start with the following definition.

Definition 1. Let α be an endomorphism of a ring R. The ring R is called α-weak Armendariz (resp., α-skew weak Armendariz) if for $f(x) = a_0 + a_1 x + \cdots + a_m x^m, g(x) = b_0 + b_1 x + \cdots + b_n x^n \in R[x; \alpha]$ satisfy $f(x)g(x) = 0$, then $a_i b_j \in \text{nil}(R)$ (resp., $a_i \alpha^j(b_j) \in \text{nil}(R)$) for all $0 \leq i \leq m$ and $0 \leq j \leq n$.

It is clear that a ring R is weak Armendariz if R is id_R-weak Armendariz, where id_R is the identity endomorphism of R.

[\alpha]
Proposition 2. For an endomorphism α of a ring R, we have the following statements:

1. If R is α-Armendariz (resp., α-skew Armendariz) ring, then R is α-weak Armendariz (resp., α-skew weak Armendariz).

2. Every subring S with $\alpha(S) \subseteq S$ of an α-weak Armendariz ring is also α-weak Armendariz.

Proof. It is clear by definition.

The following example shows that there exists an endomorphism α of a weak Armendariz ring R such that R is not α-weak Armendariz.

Example 3. Let $R = R_1 \oplus R_2$, where R_1 and R_2 be any reduced rings. Then R is a semicommutative and so R is weak Armendariz. Let $\alpha : R \to R$ be an endomorphism defined by $\alpha((a, b)) = (b, a)$. Let $f(x) = (0, 1) - (0, 1)x$, $\overline{g}(x) = (1, 0) + (0, 1)x \in R[x; \alpha]$. Then $f(x)g(x) = 0$, but $(0, 1)(0, 1) = (0, 1) \notin \text{nil}(R)$. Therefore R is neither α-weak Armendariz nor α-skew weak Armendariz.

Any endomorphism α of R can be extended to an endomorphism $\overline{\alpha}$ of $T_n(R)$ defined by $\overline{\alpha}((a_{ij})) = (\alpha(a_{ij}))$.

Proposition 4. Let α be an endomorphism of a ring R. Then R is α-weak Armendariz if and only if, for any n, $T_n(R)$ is α-weak Armendariz.

Proof. We only prove necessity, since subrings of α-weak Armendariz rings is also α-weak Armendariz. Note that $T_n(R)[x; \overline{\alpha}] \cong T_n(R[x; \alpha])$. Let $f(x) = \sum_{i=0}^{p} A_i x^i$ and $g(x) = \sum_{j=0}^{q} B_j x^j \in T_n(R[x; \overline{\alpha}])$ are such that $f(x)g(x) = 0$. Let

$$A_i = \begin{pmatrix} a_{11}^i & a_{12}^i & \cdots & a_{1n}^i \\ 0 & a_{22}^i & \cdots & a_{2n}^i \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn}^i \end{pmatrix}, \quad B_j = \begin{pmatrix} b_{11}^j & b_{12}^j & \cdots & b_{1n}^j \\ 0 & b_{22}^j & \cdots & b_{2n}^j \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b_{nn}^j \end{pmatrix},$$

for $0 \leq i \leq p$, $0 \leq j \leq q$. Then $f_s(x) = \sum_{i=0}^{p} a_{ss}^i x^i$ and $g_s(x) = \sum_{j=0}^{q} b_{ss}^j x^j \in R[x; \alpha]$ and $f_s(x)g_s(x) = 0$, for each $1 \leq s \leq n$. Since R is α-weak Armendariz ring, there exists $m_{ij} \in \mathbb{N}$ such that $(a_{ss}^i b_{ss}^j)^{m_{ij}} = 0$, for any s and any i, j. Let $m_{ij} = \max\{m_{ij} | 1 \leq s \leq n\}$. Then $[(A_i B_j)^{m_{ij}}]^n = 0$. Therefore $T_n(R)$ is $\overline{\alpha}$-weak Armendariz.

Corollary 5. [8, Proposition 2.2] A ring R is a weak Armendariz ring if and only if, for any n, $T_n(R)$ is weak Armendariz.
Definition 6. For a ring R, consider the following set of triangular matrices:

$$T(R, n) := \left\{ \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \\ 0 & a_0 & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_1 \\ 0 & 0 & 0 & \cdots & a_0 \end{pmatrix} \mid a_i \in R \right\}$$

with $n \geq 2$.

It is easy to see that $T(R, n)$ is a subring of the triangular matrix rings, with matrix addition and multiplication. We can denote elements of $T(R, n)$ by $(a_0, a_1, \ldots, a_{n-1})$, then $T(R, n)$ is a ring with addition point-wise and multiplication given by

$$(a_0, a_1, \ldots, a_{n-1})(b_0, b_1, \ldots, b_{n-1}) = (a_0b_0, a_0b_1 + a_1b_0, \ldots, a_0b_{n-1} + \cdots + a_{n-1}b_0),$$

for each $a_i, b_j \in R$.

On the other hand, there is a ring isomorphism $\varphi : R[x]/\langle x^n \rangle \to T(R, n)$, given by $\varphi(a_0 + a_1x + \cdots + a_{n-1}x^{n-1}) = (a_0, a_1, \ldots, a_{n-1})$, with $a_i \in R$, $0 \leq i \leq n - 1$. So $T(R, n) \cong R[x]/\langle x^n \rangle$, where $R[x]$ is the ring of polynomial in an indeterminate x and $\langle x^n \rangle$ is the ideal generated by x.

Theorem 7. A ring R is α-weak Armendariz ring if and only if, for any n, $\frac{R[x]}{\langle x^n \rangle}$ is $\overline{\alpha}$-weak Armendariz.

Proof. We only prove necessity, since subrings of α-weak Armendariz rings is also α-weak Armendariz. Note that $nil(T(R, n)) = (nil(R), R, \ldots, R)$ and also $T(R, n)[x; \overline{\alpha}] \cong T(R[x; \alpha], n)$. Let $F(x) = \sum_{i=0}^{m} A_i x_i$, $G(x) = \sum_{j=0}^{n} B_j x_j \in T(R, n)[x; \overline{\alpha}]$ are such that $F(x)G(x) = 0$. Let

$$A_i = \begin{pmatrix} a_{i0} & a_{i1} & \cdots & a_{i(n-2)} & a_{i(n-1)} \\ 0 & a_{i0} & a_{i1} & \cdots & a_{i(n-2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_{i0} & \cdots & a_{i1} \\ 0 & 0 & \cdots & \cdots & a_{i0} \end{pmatrix}, B_j = \begin{pmatrix} b_{j0} & b_{j1} & \cdots & b_{j(n-2)} & b_{j(n-1)} \\ 0 & b_{j0} & b_{j1} & \cdots & b_{j(n-2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & b_{j0} & \cdots & b_{j1} \\ 0 & 0 & \cdots & 0 & b_{j0} \end{pmatrix}$$

for $0 \leq i \leq m$, $0 \leq j \leq n$. Then $f_0(x) = \sum_{i=0}^{m} a_{i0}x_i$ and $g_0(x) = \sum_{j=0}^{n} b_{j0}x_j \in R[x; \alpha]$ and $f_0(x)g_0(x) = 0$. Since R is α-weak Armendariz ring, there exists $m_{ij} \in \mathbb{N}$ such that $(a_{i0}b_{j0})^{m_{ij}} = 0$, for any i, j. Then $A_iB_j \in nil(T(R, n))$. Therefore $\frac{R[x]}{\langle x^n \rangle}$ is $\overline{\alpha}$-weak Armendariz.

If we take $\alpha = id_R$, we deduce:

Corollary 8. A ring R is weak Armendariz if and only if, for any n, $\frac{R[x]}{\langle x^n \rangle}$ is weak Armendariz.

Corollary 9. [8, Theorem 3.9] If R is a semicommutative ring, then for any
Weak Armendariz skew polynomial rings

Let \(R[\frac{R[x]}{(x^n)}] \) is weak Armendariz.

Recall that for a ring \(R \) and an \((R,R)\)-bimodule \(M \), the trivial extension of \(R \) by \(M \) is the ring \(T(R,M) = R \oplus M \) with the usual addition and the multiplication \((r_1,m_1)(r_2,m_2) = (r_1r_2,r_1m_2 + r_2m_1)\). This is isomorphic to the ring of all matrices \(\begin{pmatrix} r & m \\ 0 & r \end{pmatrix} \), where \(r \in R \) and \(m \in M \) and the usual matrix operations are used.

Corollary 10. Let \(\alpha \) be an endomorphism of a ring \(R \). Then \(R \) is \(\alpha \)-weak Armendariz if and only if, \(T(R,R) \) is \(\bar{\alpha} \)-weak Armendariz.

Proof. Observe that \(R[\frac{R[x]}{(x^n)}] \cong T(R,R) \).

Example 11. Consider the ring \(R_4 = \left\{ \begin{pmatrix} a_{12} & a_{13} & a_{14} \\ 0 & a_{23} & a_{24} \\ 0 & 0 & a_{34} \\ 0 & 0 & 0 \end{pmatrix} \mid a_{ij} \in R \right\} \), where \(R \) is an \(\alpha \)-rigid ring. The endomorphism \(\alpha \) of \(R \) is extended to the endomorphism \(\bar{\alpha} : R_4 \rightarrow R_4 \) defined by \(\bar{\alpha}((a_{ij})) = (\alpha(a_{ij})) \). The ring \(R_4 \) is not \(\bar{\alpha} \)-Armendariz by [4, Example 18] and [5, Theorem 1.8]. But since \(R \) is \(\alpha \)-rigid, \(R \) is \(\alpha \)-weak Armendariz and hence \(R_4 \) is \(\bar{\alpha} \)-weak Armendariz by Propositions 4 and 2(2).

Lemma 12. [3, Lemma 3.2] Let \(R \) be an \(\alpha \)-compatible ring. Then we have the following:

(i) If \(ab = 0 \), then \(a\alpha^n(b) = \alpha^n(a)b = 0 \), for all positive integers \(n \).

(ii) If \(\alpha^k(a)b = 0 \) for some positive integer \(k \), then \(ab = 0 \).

We now state another lemma that will be helpful to us in the sequel.

Lemma 13. Let \(R \) be an \(\alpha \)-compatible ring. Then we have the following:

(i) If \(ab \in \text{nil}(R) \), then \(a\alpha^m(b) \in \text{nil}(R) \) and \(\alpha^n(a)b \in \text{nil}(R) \), for all positive integers \(m, n \).

(ii) If \(\alpha^k(a)b \in \text{nil}(R) \) or \(a\alpha^l(b) \in \text{nil}(R) \) for some positive integers \(k, l \), then \(ab \in \text{nil}(R) \).

Proof. Since \(ab \in \text{nil}(R) \), there exist some positive integer \(k \) such that \((ab)^k = abab \cdots ab = 0 \). Using \(\alpha \)-compatibility of \(R \), we have:

\[
ababab \cdots abab = 0 \\
\Leftrightarrow ababab \cdots abaa^m(b) = 0 \\
\Leftrightarrow ababab \cdots a\alpha^m(baa^m(b)) = 0
\]
\[\Leftrightarrow ababab \cdots a\alpha^m(b)\alpha^m(a\alpha^m(b)) = 0 \]
\[\Leftrightarrow ababab \cdots a\alpha^m(b)a\alpha^m(b) = 0 \]
\[\vdots \]
\[\Leftrightarrow [a\alpha^m(b)]^k = 0. \] Therefore \(a\alpha^m(b)\in\text{nil}(R)\). By a similar way, one can prove the other cases.

Lemma 14. Let \(R\) be \(\alpha\)-compatible ring. Then \(a^{k_1+k_2+\cdots+k_n} = 0\), implies that
\[(\alpha^{v_1}(a))^{k_1}(\alpha^{v_2}(a))^{k_2} \cdots (\alpha^{v_n}(a))^{k_n} = 0, \] where \(v_p\) (\(1 \leq p \leq n\)) is a nonnegative integer.

Proof. Using Lemma 12 and \(\alpha\)-compatibility of \(R\), we have:
\[a^{k_1+k_2+\cdots+k_n} = 0 \]
\[\Rightarrow a^{k_1}a^{k_2} \cdots a^{k_n} = 0 \]
\[\Rightarrow a^{k_1}a^{k_2} \cdots a^{k_{n-1}}\alpha^{v_n}(a^{k_n}) = 0 \]
\[\Rightarrow a^{k_1}a^{k_2} \cdots a^{k_{n-1}}(\alpha^{v_n}(a))^{k_n} = 0 \]
\[\Rightarrow \alpha^{v_n-1}(a^{k_1}a^{k_2} \cdots a^{k_{n-2}})(\alpha^{v_n-1}(a^{k_{n-1}})(\alpha^{v_n}(a))^{k_n} = 0 \]
\[\Rightarrow \alpha^{v_n-1}(a^{k_1}a^{k_2} \cdots a^{k_{n-2}})(\alpha^{v_n-1}(a^{k_{n-1}})(\alpha^{v_n}(a))^{k_n} = 0 \]
\[\Rightarrow a^{k_1}a^{k_2} \cdots a^{k_{n-2}}(\alpha^{v_n-1}(a))^{k_{n-1}}(\alpha^{v_n}(a))^{k_n} = 0 \]
\[\vdots \]
\[\Rightarrow (\alpha^{v_1}(a))^{k_1}(\alpha^{v_2}(a))^{k_2} \cdots (\alpha^{v_n}(a))^{k_n} = 0. \]

Recall that an ideal \(I\) of a ring \(R\) is called \(\alpha\)-invariant if \(\alpha(I) \subseteq I\). If an ideal \(I\) of \(R\) is \(\alpha\)-invariant, then \(I[x;\alpha]\) is an ideal of \(R[x;\alpha]\), as for any \(a \in I\), \(\alpha^j(a) \in I\) for all positive integers \(j\).

Corollary 15. Let \(R\) be \(\alpha\)-compatible ring. Then \(\text{nil}(R)[x;\alpha]\) is an ideal of \(R[x;\alpha]\).

Proposition 16. Let \(R\) be semicommutative and \(\alpha\)-compatible ring and \(f(x) = a_0 + a_1x + \cdots + a_nx^n \in R[x;\alpha]\). Then \(f(x) \in \text{nil}(R[x;\alpha])\) if and only if \(a_i \in \text{nil}(R)\) for all \(0 \leq i \leq n\).

Proof. Suppose \(f(x) = a_0 + a_1x + \cdots + a_nx^n \in R[x;\alpha]\) and there exist some positive integer \(k\) such that \([f(x)]^k = 0\). Then \(a_n\alpha^n(a_n) \cdots \alpha^{(k-1)n}(a_n) = 0\), since it is the leading coefficient of \([f(x)]^k\). Using Lemma 11 and \(\alpha\)-compatibility of \(R\), we have:
\[a_n\alpha^n(a_n)\alpha^{2n}(a_n) \cdots \alpha^{(k-1)n}(a_n) = 0 \]
\[\Rightarrow \alpha^n(a_n)\alpha^n(a_n)\alpha^{2n}(a_n) \cdots \alpha^{(k-1)n}(a_n) = 0 \]
\[\Rightarrow \alpha^n(a_n^2)\alpha^{2n}(a_n) \cdots \alpha^{(k-1)n}(a_n) = 0 \]
\[\Rightarrow a_n^2\alpha^{2n}(a_n) \cdots \alpha^{(k-1)n}(a_n) = 0 \]
\[\Rightarrow \alpha^{2n}(a_n^3)\alpha^{3n}(a_n) \cdots \alpha^{(k-1)n}(a_n) = 0 \]
Each coefficient of $a^3 \alpha^3 (a_n) \cdots \alpha^{(k-1)n}(a_n) = 0$

\[\Rightarrow a_n^k = 0. \] Therefore, $a_n \in \text{nil}(R)$. Thus we obtain $[a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}]^k \in \text{nil}(R)[x; \alpha, \delta]$, since R is semicommutative ring and hence $\text{nil}(R)$ is an ideal of R, by [8, Lemma 3.1]. So we have $a_{n-1}^n \alpha^{(n-1)(n-1)}(a_{n-1}) \in \text{nil}(R)$, and similar discussion yields that $a_{n-1} \in \text{nil}(R)$. Therefore, by induction, we have $a_i \in \text{nil}(R)$ for each $0 \leq i \leq n$.

Conversely, suppose that $\alpha^{n_i} = 0$, for $i = 0, 1, \ldots, n$. Let $k = \sum m_i + 1$. Thus
\[[a_0 + a_1 x + \cdots + a_n x^n]^k = \sum (a_0^{i_0} (a_1 x)^{i_1} \cdots (a_n x^n)^{i_n}) (a_0^{i_0} (a_1 x)^{i_2} \cdots (a_n x^n)^{i_2}) \cdots (a_0^{i_0} (a_1 x)^{i_k} \cdots (a_n x^n)^{i_k}), \]
where $\sum i_n = 1$, for $1 \leq k \leq n$ and $0 \leq i_n \leq 1$.

Each coefficient of $[f(x)]^k$ is a sum of elements $((\alpha^{v_0} (a_0))^{i_0} \cdots (\alpha^{v_1} (a_n))^{i_n}) \cdots (\alpha^{v_k} (a_s))^{i_k}$, where $i_0 + i_1 + \cdots + i_k = 1$. It can be easily checked that there exists $a_s \in \{a_0, a_1, \cdots, a_n\}$ such that $i_1 + i_2 + \cdots + i_k \geq m_s$.

Since $\alpha^{m_s} = 0$, so $a_s^{i_1 + i_2 + \cdots + i_k} = 0$, and hence by Lemma 14 we have $((\alpha^{v_1} (a_s))^{i_0} (\alpha^{v_2} (a_s))^{i_2} \cdots (\alpha^{v_k} (a_s))^{i_k}) = 0$. Thus each coefficient of $[f(x)]^k$ is zero, since R is semicommutative. Hence $[f(x)]^k = 0$, as desired.

Corollary 17. Let R be a semicommutative ring. Then $f(x) = \sum a_i x^i$ is a nilpotent element of $R[x]$ if and only if $a_i \in \text{nil}(R)$ for all $0 \leq i \leq n$.

Proposition 18. Each α-compatible semicommutative ring is α-weak Armendariz.

Proof. Note that $f(x)g(x) = \left(\sum_{i=0}^{m} a_i x^i \right) \left(\sum_{j=0}^{n} b_j x^j \right) = \sum_{k=0}^{m+n} \left(\sum_{i+j=k} a_i \alpha^i(b_j) \right) x^k = 0$. Then we have the following equations:

\[\sum_{i+j=k} a_i \alpha^i(b_j) = 0, \quad k = 0, 1, \ldots, m+n. \]

We will show that $a_i b_j \in \text{nil}(R)$ by induction on $i+j$.

If $i+j = 0$, then $0 = a_0 b_0 \in \text{nil}(R)$ and so $a_0 b_0 \in \text{nil}(R)$.

Now suppose that k is a positive integer such that $a_i b_j \in \text{nil}(R)$ when $i+j < k$.

We will show that $a_i b_j \in \text{nil}(R)$ when $i+j = k$.

We have the equation

\[a_0 b_k + a_1 \alpha(b_{k-1}) + a_2 \alpha^2(b_{k-2}) + \cdots + a_k \alpha^k(b_0) = 0, \quad (*) \]

since it is the coefficient of x^k in $f(x)g(x) = 0$. Multiplying (*) by b_0 from left, we have

\[b_0 a_k \alpha^k(b_0) = - (b_0 a_0 b_k + b_0 a_1 \alpha(b_{k-1}) + b_0 a_2 \alpha^2(b_{k-2}) + \cdots + b_0 a_{k-1} \alpha^{k-1}(b_1)). \]

On the other hand, by induction hypothesis we have $a_i b_i \in \text{nil}(R)$ for each $0 \leq i < k$, and so $b_0 a_i \in \text{nil}(R)$ for each $0 \leq i < k$. Hence $b_0 a_k \alpha^k(b_0) \in \text{nil}(R)$, since $\text{nil}(R)$ is an ideal of R. Thus $b_0 a_k \alpha^k(b_0) = b_0 a_k \alpha^k(b_0 a_k) \in \text{nil}(R)$.

Then by Lemma 10, we have $b_0 a_k \in \text{nil}(R)$, since R is α-compatible, and so
$a_kb_0 \in \text{nil}(R)$. Multiplying (*) by b_1 from left, and by a similar way as above we have $a_{k-1}b_1 \in \text{nil}(R)$.

Continuing this process yields that $a_ib_j \in \text{nil}(R)$ when $i + j = k$. Therefore by induction we have $a_ib_j \in \text{nil}(R)$ for each i, j.

Corollary 19. Each α-rigid ring is α-weak Armendariz.

Example 20. Consider the ring $R_3 = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} \mid a, b, c, d \in R \right\}$, where R is an α-rigid ring. The endomorphism α of R is extended to the endomorphism $\overline{\alpha} : R_3 \to R_3$ defined by $\overline{\alpha}(\begin{pmatrix} a_{ij} \end{pmatrix}) = (\alpha(a_{ij}))$. The ring R_3 is not reduced and hence it is not $\overline{\alpha}$-rigid. But since R is α-rigid, R is α-weak Armendariz and hence R_3 is $\overline{\alpha}$-weak Armendariz, by Propositions 4 and 2(2).

Corollary 21. [8, Corollary 3.4]. Semicommutative rings are weak Armendariz.

Theorem 22. Let R be a semicommutative ring and α be an endomorphism of a ring R such that R is α-compatible. If, for some positive integer t, $\alpha^t = id_R$, then $R[x; \alpha]$ is weak Armendariz.

Proof. Let $F(y) = \sum_{i=0}^{m} f_i y^i, G(y) = \sum_{j=0}^{n} g_j y^j \in (R[x; \alpha][y])$ such that $F(y)G(y) = 0$, where $f_i = \sum_{s=0}^{p_i} a_{is} x^s, g_j = \sum_{t=0}^{q_j} b_{jt} x^t \in R[x; \alpha]$. Let $k = \sum deg(f_i) + \sum deg(g_j)$, where the degree is as polynomial in x and the degree of zero polynomial is taken to be 0. Then $F(x^k) = \sum_{i=0}^{m} f_i x^{itk}, G(x^k) = \sum_{j=0}^{n} g_j x^{jtk} \in R[x; \alpha]$.

Since $F(y)G(y) = 0$ and $\alpha^t = id_R$, so $F(x^k)G(x^k) = 0$. Then by Proposition 18, $a_{is}b_{jt} \in \text{nil}(R)$ for all $0 \leq i \leq m, 0 \leq s \leq p_i, 0 \leq j \leq n, 0 \leq t \leq q_j$. Hence by Lemma 13, $a_{is}\alpha^t(b_{jt}) \in \text{nil}(R)$. Since R is semicommutative, $\text{nil}(R)$ is an ideal of R and so $\sum_{s+t=k} a_{is}\alpha^t(b_{jt}) \in \text{nil}(R)$. Then $f_i g_j \in \text{nil}(R[x; \alpha])$, by Proposition 16. Therefore $R[x; \alpha]$ is weak Armendariz ring.

Corollary 23. [8, Theorem 3.8] If R is a semicommutative ring, then $R[x]$ is weak Armendariz ring.

Theorem 24. Let R be a semicommutative and α-compatible ring. If $R[x; \alpha]$ is weak Armendariz, then R is α-weak Armendariz.

Proof. Suppose that $R[x; \alpha]$ is weak Armendariz ring and $p(x)q(x) = 0$,
where \(p(x) = \sum_{i=0}^{m} a_i x^i \) and \(q(x) = \sum_{j=0}^{n} b_j x^j \) ∈ \(R[x; \alpha] \). Then \(f(y)g(y) = 0 \), for \(f(y) = a_0 + (a_1 x)y + \cdots + (a_m x^m)y^m \) and \(g(y) = b_0 + (b_1 x)y + \cdots + (b_n x^n)y^n \) ∈ \((R[x; \alpha])[y] \). Since \(R[x; \alpha] \) is weak Armendariz, \(a_i x^i b_j x^j \in \text{nil}(R[x; \alpha]) \), for each \(i, j \). Then by Proposition 16, \(a_i \alpha^i(b_j) \in \text{nil}(R) \) for each \(i, j \). So by Lemma 13, \(a_i b_j \in \text{nil}(R) \), for each \(i, j \). Therefore \(R \) is \(\alpha \)-weak Armendariz ring.

Corollary 25. If \(R \) is a semicommutative ring, then \(R \) is weak Armendariz ring if and only if \(R[x] \) is weak Armendariz.

Recall that if \(\alpha \) is an endomorphism of a ring \(R \), then the map \(\bar{\alpha} : R[x] \to R[x] \) defined by \(\bar{\alpha}(\sum_{i=0}^{m} a_i x^i) = \sum_{i=0}^{m} \alpha(a_i) x^i \) is an endomorphism of the polynomial ring \(R[x] \), and clearly this map extends \(\alpha \).

Theorem 26. Let \(R \) be a semicommutative and \(\alpha \)-compatible ring. Then \(R[x] \) is \(\bar{\alpha} \)-weak Armendariz ring.

Proof. Let \(F(y) = \sum_{i=0}^{p} f_i y^i \), \(G(y) = \sum_{j=0}^{q} g_j y^j \) ∈ \((R[x])[y; \bar{\alpha}] \) such that \(F(y)G(y) = 0 \), where \(f_i = \sum_{s=0}^{m_i} a_{is} x^s \), \(g_j = \sum_{t=0}^{n_j} b_{jt} x^t \) ∈ \(R[x] \). Let \(m = \text{Max}\{m_i \mid 0 \leq i \leq p\} \) and \(n = \text{Max}\{n_j \mid 0 \leq j \leq q\} \). Then we can assume \(f_i = \sum_{s=0}^{m_i} a_{is} x^s \) and \(g_j = \sum_{t=0}^{n_j} b_{jt} x^t \) ∈ \(R[x] \). Hence \(F(y) = \sum_{i=0}^{p} (\sum_{s=0}^{m_i} a_{is} x^s) y^i = \sum_{s=0}^{m} (\sum_{i=0}^{p} a_{is} y^i) x^s \) and also \(G(y) = \sum_{j=0}^{q} (\sum_{t=0}^{n_j} b_{jt} x^t) y^j = \sum_{t=0}^{n} (\sum_{j=0}^{q} b_{jt} y^j) x^t \). Since \(F(y)G(y) = 0 \), hence we have

\[
\sum_{s+t=k} (\sum_{i=0}^{p} a_{is} y^i)(\sum_{j=0}^{q} b_{jt} y^j) = 0, \quad 0 \leq k \leq m+n. \quad (\ast)
\]

We will show by induction on \(s+t \) that \(a_{is} b_{jt} \in \text{nil}(R) \) for any \(0 \leq i \leq p \), any \(0 \leq j \leq q \), and any \(s, t \) with \(s+t = 0, 1, \ldots, m+n \).

If \(s+t = 0 \), then \(s = t = 0 \). Thus \((\sum_{i=0}^{p} a_{i0} y^i)(\sum_{j=0}^{q} b_{j0} y^j) = 0 \). Since \(R \) is semicommutative and \(\alpha \)-compatible, so by Proposition 18, \(R \) is \(\alpha \)- weak Armendariz. Thus \(a_{i0} b_{j0} \in \text{nil}(R) \) for any \(0 \leq i \leq p \), any \(0 \leq j \leq q \).

Now suppose that \(k \leq m+n \) is such that \(a_{is} b_{jt} \in \text{nil}(R) \) for any \(0 \leq i \leq p \), any \(0 \leq j \leq q \), and any \(s, t \) with \(s+t < k \). We will show that \(a_{is} b_{jt} \in \text{nil}(R) \) for any \(0 \leq i \leq p \), any \(0 \leq j \leq q \), and any \(s, t \) with \(s+t = k \). From (\ast) we have

\[
0 = \sum_{s+t=k} (\sum_{i=0}^{p} a_{is} y^i)(\sum_{j=0}^{q} b_{jt} y^j) = \sum_{s+t=k} \sum_{l=0}^{p+q} (\sum_{i+j=l} a_{is} \alpha^i(b_{jt})) y^l
\]
Thus
\[\sum_{s+t=k} a_{0s}b_{0t} = 0, \]
\[\sum_{s+t=k} a_{0s}b_{1t} + \sum_{s+t=k} a_{1s}\alpha(b_{0t}) = 0, \]
\[\ldots \]
\[\sum_{s+t=k} a_{0s}b_{lt} + \sum_{s+t=k} a_{1s}\alpha(b_{(l-1)t}) + \cdots + \sum_{s+t=k} a_{ls}\alpha(b_{0t}) = 0, \]
\[\sum_{s+t=k} a_{ps}\alpha^p(b_{qt}) = 0. \]

If \(s < k \), then by induction hypothesis, \(a_{0s}b_{00} \in \text{nil}(R) \) and so \(b_{00}a_{0s} \in \text{nil}(R) \). Hence \(b_{00}a_{00}b_{0k} + b_{00}a_{01}b_{0k-1} + \cdots + b_{00}a_{0k-1}b_{01} \in \text{nil}(R) \), since \(R \) is semicommutative. If we multiply \(\sum_{s+t=k} a_{0s}b_{0t} = 0 \) on left side by \(b_{00} \), then we have \(b_{01}a_{0k-1}b_{01} = -(b_{01}a_{00}b_{0k} + b_{01}a_{01}b_{0k-1} + \cdots + b_{01}a_{0k-2}b_{02}) - b_{01}a_{0k}b_{00} = -(b_{01}a_{00})b_{0k} - (b_{01}a_{01})b_{0k-1} - \cdots -(b_{01}a_{0k-2})b_{02} - b_{01}(a_{0k}b_{00}) \in \text{nil}(R) \), since \(R \) is semicommutative. Thus \(a_{0k-1}b_{01} \in \text{nil}(R) \). Similarly, we can show that \(a_{0k-2}b_{02} \in \text{nil}(R), \ldots, a_{00}b_{0k} \in \text{nil}(R) \). So we show that \(a_{is}b_{jt} \in \text{nil}(R) \) for any \(s,t \) with \(s + t = k \) and any \(i,j \) with \(i + j = 0 \). Suppose that \(l \leq p + q \) is such that \(a_{is}b_{jt} \in \text{nil}(R) \) for any \(s,t \) with \(s + t = k \) and any \(i,j \) with \(i + j < l \). We will show that \(a_{is}b_{jt} \in \text{nil}(R) \) for any \(s,t \) with \(s + t = k \) and any \(i,j \) with \(i + j = l \). If \(s < k \), then by induction hypothesis, \(a_{is}b_{00} \in \text{nil}(R) \). So \(b_{00}a_{is} \in \text{nil}(R) \). If \(i < l \), then by induction hypothesis on \(l \), \(a_{ik}b_{00} \in \text{nil}(R) \) for any \(i < l \), and so \(b_{00}a_{ik} \in \text{nil}(R) \) for any \(i < l \). Multiplying \(\sum_{s+t=k} a_{0s}b_{lt} + \sum_{s+t=k} a_{1s}\alpha(b_{(l-1)t}) + \cdots + \sum_{s+t=k} a_{ls}\alpha^l(b_{0t}) = 0 \) on left side by \(b_{00} \), we have \(b_{00}a_{ik}\alpha^l(b_{00}) \in \text{nil}(R) \), since \(\text{nil}(R) \) is an ideal of \(R \). Thus \(b_{00}a_{ik}\alpha^l(b_{00})\alpha^l(a_{ik}) = b_{00}a_{ik}\alpha^l(b_{00}a_{ik}) \in \text{nil}(R) \). Thus \(b_{00}a_{ik} \in \text{nil}(R) \) by Lemma 13, and so \(a_{ik}b_{00} \in \text{nil}(R) \). Similarly, we can show that \(a_{is}b_{jt} \in \text{nil}(R) \) for any \(s,t \) with \(s + t = k \) and any \(i,j \) with \(i + j = l \). Therefore, by induction, we have \(a_{is}b_{jt} \in \text{nil}(R) \) for any \(0 \leq i \leq p, \) and \(0 \leq j \leq q \) and any \(s,t \) with \(s + t = 0,1, \ldots, m + n \). Hence \(\sum_{s+t=k} a_{is}b_{jt} \in \text{nil}(R) \), since \(R \) is semicommutative. Thus \(f_i g_j \in \text{nil}(R[x]) \), by Proposition 16. Therefore \(R[x] \) is \(\bar{a} \)-weak Armendariz.

ACKNOWLEDGEMENTS. The authors would like to thank the referee for helpful comments and suggestions.
Weak Armendariz skew polynomial rings

References

Received: August, 2010