On Commutative SCI-Rings and Commutative SCS-Rings

Abdoulaye MBAYE, Mamadou SANGHARÉ

and Sidy Demba TOURÉ

Département de Mathématiques et Informatique
Faculté des sciences et Techniques de l’université
Cheikh Anta Diop de Dakar, Senegal
abdoulaye_m@hotmail.com
mamsanghare@hotmail.com
sidydtoure@yahoo.fr

Abstract. Let R be a commutative ring. An unital R-module M is said to have property (I) (resp. property (S)) if every injective (resp. surjective) endomorphism of M is an automorphism. The ring R is called commutative SCI-ring (resp. SCS-ring) if every R-module with property(I) (resp. property(S)) is finitely cogenerated. In this note we show that the following conditions are equivalent: (i) R is a commutative artinian principal ideal ring; (ii) R is a commutative SCI-ring; (iii) R is a commutative SCS-ring.

Mathematics Subject Classification: 16G10 (16D50)

Keywords: SCI-rings, SCS-rings, property (I), property (S)
Let R be a commutative ring with $1 \neq 0$. An R-module M is said to have property (I) (resp. property (S)) if every injective (resp. surjective) endomorphism of $R \times M$ is an automorphism of $R \times M$. The characterization of rings for which property (I) (resp. property (S)) characterizes a particular class of the category of R-modules has been initiated for the first time in [?] where it has been proved that a commutative ring R is an artinian principal ideal ring if and only if property (I) (resp. property (S)) characterizes the artinian (resp. noetherian) R-modules. It is clear that a non necessary commutative ring is a division ring if and only if property (I) (resp. property (S)) characterizes finitely generated free R-modules. It has been proved next time in [?] and [?] that a commutative ring is an artinian principal ideal ring if and only if property (I) (resp. property (S)) characterizes finitely generated R-modules. Let R be a commutative ring. An R-module M is said to be finitely cogenerated if its socle is essential in M and finitely generated; the ring R is called SCI-ring (resp. SCS-ring) if property (I) (resp. property (S)) characterizes finitely cogenerated modules. The notion of finitely cogenerated modules has been introduced and studied in [?]. In this paper, we show that for a commutative ring R the following conditions are equivalent: (i) R is a artinian principal ideal ring; (ii) R is a SCI-ring; (iii) R is a SCS-ring. In this note all rings are commutative and associative with $1 \neq 0$ and all modules are unitary. If R is a ring, we note by $J(R)$ or simply by J the Jacobson radical of R and by $rad R$ the prime radical of R. The socle of a R-module M will be noted $soc(M)$. For all notions not defined in this paper see [?].

1. CONSTRUCTION OF A NON FINITELY COGENERATED
 MODULE WITH BOTH PROPERTY (I) AND PROPERTY (S)
 OVER A LOCAL ARTINIAN RING WHOSE MAXIMAL IDEAL
 IS NOT PRINCIPAL

Let R be a commutative local artinian ring which is a non principal ideal ring. We may suppose without loss of generalities that the ring R is local artinian with Jacobson radical $J = aR + bR$ where $a^2 = b^2 = ab = 0$, $a \neq 0$.

and \(b \neq 0 \). Following [?] we may write \(R = C \oplus bC \) where \(C \) is an artinian local subring of \(R \) with maximal ideal \(J(C) = aC \neq 0 \). Let \(M \) be the total ring of fractions of the polynomial ring \(C[X] \), \(\sigma \) the endomorphism of the \(C \)-module \(M \) defined by \(\sigma(m) = aXm \) for \(m \in M \); \(\varphi : R \rightarrow \text{End}_CM \) the homomorphism of rings defined by \(\varphi(\alpha + \beta b) = \alpha 1_M + \beta \sigma \) for \(\alpha + \beta b \in R \) where \(\alpha \in C \), \(\beta \in C \) and \(1_M \) is the identity endomorphism of \(M \). We consider on \(M \) the \(R \)-module structure defined by \((\alpha + \beta b)m = \varphi(\alpha + \beta b)(m) = \alpha m + \beta aXm \), for \(\alpha + \beta b \in R \), \((\alpha \text{ and } \beta \in C) \) and for \(m \in M \).

If \(f \) is a \(R \)-endomorphism of the \(R \)-module \(M \), then for all \(m \in M \) we have:

\[
\sigma.f(m) = bf(m) = f(bm) = f(\sigma(m)).
\]

Thus, the \(R \)-endomorphisms of the \(R \)-module \(M \) are the \(C \)-endomorphisms of \(M \) commuting with \(\sigma \).

Following[?] proposition 2.3 the \(R \)-module \(M \) satisfies properties \((I)\) and \((S)\).

For \(d = \lambda a + \gamma b \in J = Ra + Rb \) and for \(am \in aC[X] \) we have:

\[
d.(am) = (\lambda a + \gamma b)am = \varphi(\lambda a + \gamma b)(am) = (\lambda a 1_M + \gamma \sigma)(am) = \lambda a^2 m + \gamma a^2 Xm = 0
\]

Therefore, the submodule \(aC[X] = \bigoplus_{n \geq 0} aCX^n \) of \(M \) is annihilated by \(J \), then \(aC[X] \) is semi-simple as \(R \)-module. Since \(aC[X] \) is not finite length as \(R \)-module, then \(M \) is not finitely cogenerated.

2. CHARACTERIZATION OF COMMUTATIVE SCI-RINGS AND COMMUTATIVE SCS-RINGS

Proposition 2.1. Let \(R \) be a commutative SCI-ring(resp. SCS-ring). If \(R \) is an integral domain, then \(R \) is a field.

Proof. Let \(K \) be the classical quotient field of the integral domain \(R \). The \(R \)-module \(R_K \) satisfies property \((I)\)(resp. property \((S)\)). Therefore, \(R_K \) is finitely cogenerated. Thus, \(\text{soc}(R_K) \cap R \neq \{0\} \). Let \(S = Ra \ (a \in R \setminus \{0\}) \) a simple submodule of \(\text{soc}(R_K) \cap R \). The map:

\[
\varphi : R \rightarrow S = Ra
\]
$x \mapsto xa$

is an isomorphism of R-modules. Therefore $_RR$ is simple. So far $b \in R\setminus\{0\}$ we have $R = Rb = Rb^2$, then $b = cb^2$ for some $c \in R$. It follows that $1 = cb$. □

Proposition 2.2. Let R be a commutative SCI-ring (resp. SCS-ring). We have the following results:

1. Every prime ideal of R is a maximal ideal;
2. The Jacobson radical of R is nil;
3. The set of the maximal ideals of R is finite;
4. R is a finite direct product of SCI (resp. SCS) commutative local rings.

Proof.

(1) If p is a prime ideal of R, then R/p is a commutative integral domain. Since R/p is SCI-ring (resp. SCS-ring), then R/p is a field and p is maximal.

(2) $J = \text{rad}(R)$ is nil results from (1) because $J = J(R) = \text{rad}(R)$.

(3) Let D be the set of all prime ideals of R. If p and p' are two elements of D such that $p \not\subseteq p'$ then $\text{Hom}(R/p, R/p') = \{0\}$ (see [?]). Therefore, the semi-simple R-module $M = \bigoplus_{p \in D} R/p$ satisfies property (I) (resp. property (S)), so $\text{soc}(M) = M$ is finitely cogenerated. It follows that M is finitely generated and then D is a finite set.

(4) By (3) $R/J \cong \prod_{p \in D} R/p$. So that R/p is a semi-simple ring. Since J is a nil ideal of R, then R is semi-perfect. So R is a finite direct product of local SCI-rings (resp. SCS-rings).

□

Proposition 2.3. Let R be a commutative SCI-ring (resp. SCS). Then R is Artinian.

Proof. Following [?](10.8) it is enough to show that every finitely generated R-module is finitely cogenerated. Since R is a commutative ring and every prime ideal of R is maximal, then every finitely generated R-module M satisfies property (I) (resp. property (S)) (see [?] resp[?]), and from the hypothesis that R is a SCI-ring (resp. SCS-ring), it follows that M is finitely cogenerated. □

Proposition 2.4. Let R be a commutative SCI (resp. SCS) ring. Then R is a finite direct product of local artinian SCI (resp. SCS)-ring.
Proof. It follows from (2.2) and (2.3).

Theorem 2.5. Let R be a commutative ring. Then the following conditions are equivalent:

1. R is a SCI-ring;
2. R is a SCS-ring;
3. R is an artinian principal ideal ring.

Proof. (1) ⇒ (3)(resp.(2)) ⇒ (3)
Following (2.4) we may suppose that R is a commutative local artinian SCI (resp. SCS-ring). Then by §1 R is an principal ideal ring.

(3) ⇒ (1)(resp.(3) ⇒ (2))
Following [?], every R-module satisfying property (I) (resp. property (S)) is finitely generated, then finitely cogenerated (see.[?]((10.18))). Therefore R is a SCI-ring(resp. SCS-ring).

References

Received: November, 2009