McCoy Rings Relative to a Monoid

M. Khoramdel

Department of Azad University, Boushehr, Iran
M_khoramdel@sina.kntu.ac.ir
Mehdikhoramdel@gmail.com

S. Dolati Pishhesari

Department of Azad University, Boushehr, Iran
saboura_dolati@yahoo.com

Abstract

For a monoid M, we introduce M-McCoy rings, which are a generalization of McCoy rings, and investigate their properties. Every reversible ring is M-McCoy for any unique product monoid M. It is also shown that a finitely generated Abelian group M is torsion free if and only if there exists a ring R such that R is M-McCoy.

Mathematics Subject Classification: Primary 16U99; Secondary 16S15

Keywords: Reversible ring; Monoid rings; M-McCoy condition

1 Introduction

Throughout in this paper, all rings are associative with identity. A ring R is right McCoy ring if the equation $f(x)g(x) = 0$ where $f(x), g(x) \in R[x]\{0\}$, implies that there exists $s \in R\{0\}$ such that $f(x)s = 0$. Left McCoy rings are defined similarly[5]. McCoy rings were chosen because McCoy [4] had noted that every commutative rings satisfy this condition.

Let M be a monoid. In the following, e will always stand for the identity of M. A ring R is called a right M-McCoy ring(a McCoy ring relative to M), if whenever elements $\alpha = a_1g_1 + \ldots + a_ng_n, \beta = b_1h_1 + \ldots + b_mh_m \in R[M]$ satisfy $\alpha\beta = 0$, then $\alpha s = 0$ for some $s \in R\{0\}$. Left M-McCoy rings are defined similarly. If $M = \{e\}$ then every ring is M-McCoy. Let $M = (N\cup\{0\}, +)$. Then a ring R is M-McCoy if and only if R is McCoy ring. The following results will give more examples of M-McCoy rings.
Recall that a monoid \(M \) is called an \(u.p.-\) monoid (unique product monoid) if for any two nonempty finite subsets \(A, B \subseteq M \) there exist an element \(g \in M \), uniquely presented in the form \(ab \) where \(a \in A \) and \(b \in B \). The class of \(u.p.-\)monoids is quite large and important (see [1]). For example, this class includes the right or left ordered monoids, submonoids of a free groups, and torsion free nilpotent group. Every \(u.p.-\)monoid \(M \) has no nonunity of finite order.

For notation \(M_n(R), T_n(R), I_n \) and \(e_{ij}, 1 \leq i, j \leq n \) denote the \(n \times n \) matrix ring over \(R \), the upper triangular matrix ring over \(R \), the identity matrix and the matrix with 1 at \((i, j)-\)entry and 0 elsewhere, respectively.

2 Main results

Definition 2.1 Let \(M \) be a monoid. A ring \(R \) is called right \(M\)-McCoy ring if whenever elements \(\alpha = a_1g_1 + ... + a_ng_n, \beta = b_1h_1 + ... + b_mh_m \in R[M] \) satisfy \(\alpha\beta = 0 \), then \(\alpha s = 0 \) for some \(s \in R \setminus \{0\} \). Left \(M\)-McCoy rings are defined analogously.

Recall that a ring \(R \) is called reversible if \(ab = 0 \) then \(ba = 0 \) for all \(a, b \in R \).

Proposition 2.2 Let \(M \) be an \(u.p.-\)monoid and \(R \) a reversible ring. Then \(R \) is \(M\)-McCoy.

proof: Let \(\alpha = a_1g_1 + ... + a_ng_n \) and \(\beta = b_1h_1 + ... + b_mh_m \in R[M] \) be such that \(\alpha \beta = 0 \). We claim that there exists \(s \in R \setminus \{0\} \) such that \(\alpha s = 0 \). We proceed by induction on \(n \).

Let \(n = 1 \). Then \(\alpha = a_1g_1 \). By [1, Lemma 1.1] \(g_1h_i \neq g_1h_j \) for \(i \neq j \). Thus \(a_1b_j = 0 \) for all \(j \).

Let \(n \geq 2 \). Since \(M \) is \(u.p.-\)monoid, there exist \(i, j \) with \(1 \leq i \leq n \) and \(1 \leq j \leq m \) such that \(g_ih_j \) is uniquely presented by considering two subset \(A = \{g_1, g_2, ..., g_n\} \) and \(B = \{h_1, h_2, ..., h_m\} \) of \(M \). We may assume, without loss of generality, that \(i = 1, j = 1 \). Thus \(a_1b_1g_1h_1 = 0 \) and hence \(a_1b_1 = 0 \). Since \(R \) is reversible, \(b_1a_1 = 0 \) follows. Thus \(b_1\alpha \beta = 0 \) and so

\[
\left(\sum_{i=2}^{n} (b_1a_i)g_i \right) \left(\sum_{j=1}^{m} b_jh_j \right) = 0.
\]

By induction, we have \(\left(\sum_{i=2}^{n} (b_1a_i)g_i \right) s = 0 \) for some \(s \in R \setminus \{0\} \). Thus \(\alpha sb_1 = 0 \). This prove the results. Similarly, by induction on \(m \) we prove that \(R \) is left \(M\)-McCoy.
Let \((M, \leq)\) be an ordered monoid. If for any \(g, \dot{g}, h \in M,\) \(g < \dot{g}\) implies \(gh < \dot{gh}\) and \(hg < h\dot{g}\), then \((M, \leq)\) is called a strictly ordered monoid.

Corollary 2.3 Let \(M\) be a strictly totally ordered monoid and \(R\) a reversible ring. Then \(R\) is \(M\)-McCoy.

Corollary 2.4 Let \(R\) be a reversible ring. Then \(R\) is \(Z\)-McCoy, that is, for any \(\alpha = \sum a_{ng-n} + \ldots + a_qg_q, \beta = \sum b_{mh-m} + \ldots + b_ph_p \in R[x, x^{-1}],\) if \(\alpha\beta = 0,\) then there exist \(t, s \in R \setminus \{0\}\) such that \(\alpha s = 0\) and \(t\beta = 0.\)

Taking \(M = (N \cup \{0\}, +)\) in Corollary 2.3, it follows that every reversible ring is McCoy; [5, Theorem 2].

Proposition 2.5 Let \(M\) be a monoid with \(|M| \geq 2\). Then a ring \(R\) is the right (resp., left) \(M\)-McCoy if and only if the ring

\[
R_n := \left\{ \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \mid a, a_{ij} \in R \right\}
\]

is right (resp., left) \(M\)-McCoy for any \(n \geq 1.\)

proof: Let \(R\) be an \(M\)-McCoy ring and \(\alpha = A_1g_1 + \ldots + A_ng_n, \beta = B_1h_1 + \ldots + B_mh_m \in R_n[M].\) Assume that \(\alpha\beta = 0.\) Let

\[
A_i = \begin{pmatrix} a^i & a_{i1}^i & \cdots & a_{1n}^i \\ 0 & a^i & \cdots & a_{2n}^i \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a^i \end{pmatrix},
B_j = \begin{pmatrix} b^j & b_{j1}^j & \cdots & b_{1n}^j \\ 0 & b^j & \cdots & b_{2n}^j \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b^j \end{pmatrix}.
\]

It is easy to see that there exists an isomorphism \(R_n[M] \cong (R[M])_n\) defined by

\[
\sum_{k=1}^s \begin{pmatrix} a^k & a_{12}^k & \cdots & a_{1n}^k \\ 0 & a^k & \cdots & a_{2n}^k \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a^k \end{pmatrix} g_k \rightarrow \begin{pmatrix} \sum_{k=1}^s a^k g_k \\ \sum_{k=1}^s a_{12}^k g_k \\ \vdots \\ \sum_{k=1}^s a_{2n}^k g_k \end{pmatrix},
\]

\((*)\).
Thus

\[
\alpha = \begin{pmatrix}
\alpha_1 & \alpha_{12} & \cdots & \alpha_{1n} \\
0 & \alpha_1 & \cdots & \alpha_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha_1
\end{pmatrix}, \quad \beta = \begin{pmatrix}
\beta_1 & \beta_{12} & \cdots & \beta_{1n} \\
0 & \beta_1 & \cdots & \beta_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \beta_1
\end{pmatrix}
\]

are elements of \((R[M])_n\) such that \(\alpha \beta = 0\).

Thus \(\alpha_1 \beta_1 = 0\). Since \(R\) is right \(M\)-McCoy, there exists \(s \in R \setminus \{0\}\) such that \(\alpha_1 s = 0\). Therefore, \(\alpha (se_{1n}) = 0\) and it follows that \(R_n\) is \(M\)-McCoy.

Conversely, let \(R_n\) be \(M\)-McCoy ring and \(\alpha = a_1g_1 + \ldots + a_ng_n\), \(\beta = b_1h_1 + \ldots + b_mh_m\) satisfy \(\alpha \beta = 0\) in \(R[M]\). From the isomorphism (*) we have,

\[
\begin{pmatrix}
\alpha & 0 & \cdots & 0 \\
0 & \alpha & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha
\end{pmatrix}
\begin{pmatrix}
\beta & 0 & \cdots & 0 \\
0 & \beta & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \beta
\end{pmatrix} = 0.
\]

Then as in proof of another side there exists \(s \in R \setminus \{0\}\) such that \(as = 0\). This proves the results.

A ring \(R\) is called \(M\)-Armendariz ring, if whenever elements \(\alpha = a_1g_1 + \ldots + a_ng_n\), \(\beta = b_1h_1 + \ldots + b_mh_m \in R[M]\) satisfy \(\alpha \beta = 0\), then \(a_ib_j = 0\) for each \(i, j\). \(M\)-Armendariz rings are \(M\)-McCoy by definition. However there exists an \(M\)-McCoy ring which is not \(M\)-Armendariz. If \(R\) is an \(M\)-McCoy ring, then \(R_4\) is \(M\)-McCoy too, by Proposition 2.5. However \(R_4\) is not \(M\)-Armendariz by [7, Remark 1.8].

Based on Proposition 2.5, we may suspect \(M_n(R)\) or \(T_n(R)\) over an \(M\)-McCoy ring is still \(M\)-McCoy. But the following example erases the possibility.

Example 2.6 Let \(M\) be a monoid with \(|M| \geq 2\) and \(R\) a ring. Take \(e \neq g \in M\). Let \(A = C = e_{12}, B = e_{11}, D = -e_{22}\),

\[
\alpha_1 = \begin{pmatrix}
A & 0 \\
0 & 0
\end{pmatrix} e + \begin{pmatrix}
B & 0 \\
0 & 0
\end{pmatrix} g
\]

\[
\beta_1 = \begin{pmatrix}
C & 0 \\
0 & 0
\end{pmatrix} e + \begin{pmatrix}
A & 0 \\
0 & I_{n-2}
\end{pmatrix} g
\]

\[
\beta_2 = \begin{pmatrix}
C & 0 \\
0 & 0
\end{pmatrix} e + \begin{pmatrix}
D & 0 \\
0 & 0
\end{pmatrix} g
\]
McCoy rings relative to a monoid

\[
\alpha_2 = \begin{pmatrix} A & 0 \\ 0 & I_{n-2} \end{pmatrix} e + \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix} g
\]

are elements of \(M_n(R)[M]\) so \(\alpha_1\beta_1 = 0\) and \(\alpha_2\beta_2 = 0\). But if \(S\beta_1 = 0\) or \(\alpha_2T = 0\) for some \(S,T \in M_n(R)[M]\setminus\{0\}\), then \(S = T = 0\), thus \(M_n(R)\) is neither left nor right M-McCoy.

It is natural to ask whether \(R\) is an M-McCoy ring for a monoid \(M\), if for any nonzero proper ideal \(I\) of \(R\), \(R/I\) are M-McCoy, where \(I\) is considered as a M-McCoy ring without identity. However, we have a negative answer to this question by the following example.

Example 2.7 Let \(F\) be a field and consider \(R = T_2(F)\), which is not M-McCoy, for u.p.- monoid \(M\) by Example 2.6. Next we show that \(R/I\) and \(I\) are M-McCoy for some nonzero proper ideal \(I\) of \(R\). Note that the only nonzero proper ideal of \(R\) are \(\begin{pmatrix} F & 0 \\ 0 & F \end{pmatrix}\), \(\begin{pmatrix} 0 & F \\ F & 0 \end{pmatrix}\) and \(\begin{pmatrix} 0 & 0 \\ F & 0 \end{pmatrix}\).

Let \(I = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}\). Then \(R/I \cong F\) and so \(R/I\) is M-McCoy.

Now let \(\alpha = \sum_{i=1}^{n} \left(\begin{array}{cc} a_i & b_i \\ 0 & 0 \end{array}\right) g_i\) and \(\beta = \sum_{j=1}^{m} \left(\begin{array}{cc} c_j & d_j \\ 0 & 0 \end{array}\right) h_j\) be nonzero elements of \(I[M]\) such that \(\alpha\beta = 0\). From the isomorphism \(T_2(F)[M] \cong T_2(F[M])\) defined by:

\[
\sum_{i=1}^{n} \left(\begin{array}{cc} a_i & b_i \\ 0 & c_i \end{array}\right) g_i \rightarrow \left(\begin{array}{c} \sum_{i=1}^{n} a_i g_i \\ \sum_{i=1}^{n} b_i g_i \\ \sum_{i=1}^{n} c_i g_i \end{array}\right)
\]

we have \(\alpha_1\beta_1 = \alpha_1\beta_2 = 0\) (*), where \(\alpha_1 = \sum_{i=1}^{n} a_i g_i\), \(\beta_1 = \sum_{j=1}^{m} c_j h_j\) and \(\beta_2 = \sum_{j=1}^{m} c_j h_j \in F[M]\). If \(\alpha_1 = 0\), then \(\alpha e_{11} = 0\). Suppose \(\alpha_1 \neq 0\). Since \(\beta \neq 0\), then \(\beta_1 \neq 0\) or \(\beta_2 \neq 0\). From the equation (*) and the condition that \(F\) is right M-McCoy, we have \(\alpha_1 s = 0\) for some nonzero \(s \in F\), therefore \(\alpha(se_{11}) = 0\). Thus \(I\) is right M-McCoy, and \(I\) is left M-McCoy since \(e_{12}\beta = 0\).

Proposition 2.8 Let \(M\) be a cancelative monoid and \(N\) is an ideal of \(M\). If \(R\) is right \(N\)-McCoy, then \(R\) is right \(M\)-McCoy.

Proof: Suppose that \(\alpha = a_1 g_1 + ... + a_n g_n\), \(\beta = b_1 h_1 + ... + b_m h_m \in R[M]\) satisfy \(\alpha\beta = 0\). Take \(g \in N\), then \(g g_1, ..., g g_n, h_1 g, ..., h_m g \in N\) and \(g g_i \neq g g_j\).
and \(h_i g \neq h_j g \) when \(i \neq j \). Now from
\[
\left(\sum_{i=1}^{n} a_i gg_i \right) \left(\sum_{j=1}^{m} b_j h_j g \right) = 0
\]
and from the hypothesis, there exists \(s \in R \setminus \{0\} \) such that \((\sum_{i=1}^{n} a_i gg_i) s = 0 \). Thus \(\alpha s = 0 \), it follows that \(R \) is \(M \)-McCoy.

Lemma 2.9 Let \(M \) be a cyclic group of order \(n \geq 2 \) and \(R \) a ring with \(0 \neq 1 \), then \(R \) is not \(M \)-McCoy.

Proof: Suppose \(M = \{e, g, g^2, \ldots, g^{n-1}\} \). Let \(\alpha = 1e + 1g + 1g^2 + \ldots + 1g^{n-1} \) and \(\beta = 1e + (-1)g \). Then \(\alpha \beta = 0 \), but if \(\alpha s = 0 \) then \(s = 0 \). Thus \(R \) is not \(M \)-McCoy.

Lemma 2.10 Let \(M \) be a monoid and \(N \) a submonoid of \(M \). If \(R \) is \(M \)-McCoy then \(R \) is \(N \)-McCoy.

Let \(T(G) \) be the set of elements of finite order in an abelian group \(G \). Then \(G \) is said to be torsion free if \(T(G) = \{e\} \).

Theorem 2.11 Let \(G \) be a finitely generated abelian group. Then the following conditions on \(G \) are equivalent.

(1) \(G \) is torsion free.
(2) There exists a ring \(R \) with \(|R| \geq 2 \) such that \(R \) is \(G \)-McCoy.

Proof: (2) \(\Rightarrow \) (1) If \(g \in T(G) \) and \(g \neq e \), then \(N = \langle g \rangle \) is cyclic group of finite order. If a ring \(R \neq \{0\} \) is \(G \)-McCoy, then by Lemma 2.10 \(R \) is \(N \)-McCoy, a contradiction with Lemma 2.9. Thus every ring \(R \neq \{0\} \) is not \(G \)-McCoy.

(1) \(\Rightarrow \) (2). If \(G \) is finitely generated abelian group with \(T(G) = \{e\} \), then \(G \cong Z \times Z \times \ldots \times Z \), a finite direct product group \(Z \), by [7, Lemma 1.13], \(G \) is u.p.-monoid. Let \(R \) be a commutative ring then by Proposition 2.2, \(R \) is \(G \)-McCoy.

A classical right quotient ring for a ring \(R \) is a ring \(Q \) which contains \(R \) as a subring in such a way that every regular element (i.e., non-zero-divisor) of \(R \) is invertible in \(Q \) and \(Q = \{ab^{-1} : a, b \in R, b \text{ is regular}\} \). A ring \(R \) is called right Ore if given \(a, b \in R \) with \(b \) regular there exist \(a_1, b_1 \in R \) with \(b_1 \) regular
such that \(ab_1 = ba_1\). Classical left quotient rings and left Ore rings are defined similarly. It is a well-known fact that \(R\) is a right (resp., left) Ore ring if and only if the classical right (resp., left) quotient ring of \(R\) exists.

Theorem 2.12 Suppose that there exists the classical right quotient ring \(Q\) of a ring \(R\). Then \(R\) is right M-McCoy if and only if \(Q\) is right M-McCoy.

proof: " \(\Rightarrow\) " Let \(A = \sum_{i=1}^{n} \alpha_i g_i\) and \(B = \sum_{j=1}^{m} \beta_j h_j\) be nonzero elements of \(R[M]\) such that \(AB = 0\). Since \(Q\) is the classical right quotient ring, we may assume that \(\alpha_i = a_i u^{-1}, \beta_j = b_j v^{-1}\) with \(a_i, b_j \in R\) for all \(i, j\) and regular elements \(u, v \in R\). For each \(j\), there exists \(c_j \in R\) and a regular element \(w \in R\) such that \(u^{-1} b_j = c_j w^{-1}\). Denote \(A_1 = \sum_{i=1}^{n} a_i g_i\) and \(B_1 = \sum_{j=1}^{m} c_j h_j\). Then the equation \(A_1 B_1 (vw)^{-1} = 0\), thus there exist a nonzero element \(s \in R\{0\}\) such that \(As = 0\), then \(\alpha_i (us) = 0\) for every \(i\). It implies that \(A(us) = 0\) and \(us\) is nonzero element of \(Q\). Hence \(Q\) is right M-McCoy.

" \(\Leftarrow\) " Let \(\alpha = \sum_{i=1}^{n} \alpha_i g_i, \beta = \sum_{j=1}^{m} b_j h_j \in R[M]\) such that \(\alpha \beta = 0\). Then there exists a nonzero element \(K \in Q\) such that \(\alpha K = 0\) since \(Q\) is right M-McCoy. Because \(Q\) is a classical right quotient ring, we can assume \(K = au^{-1}\) for some \(a \in R\{0\}\) and regular element \(u\). Then \(\alpha au^{-1} = \alpha K = 0\) implies that \(\alpha a = 0\). Therefore, \(R\) is a right M-McCoy ring.

By the Goldie Theorem, if \(R\) is semiprime left and right Goldie ring, then \(R\) has the classical left and right quotient ring. Hence there exists a class of rings satisfying the following hypothesis.

Corollary 2.13 Suppose that there exists the classical left and right quotient ring \(Q\) of a ring \(R\). Then \(R\) is M-McCoy if and only if \(Q\) is M-McCoy.

In following proposition we consider the case of direct limit of direct system of M-McCoy rings.

Proposition 2.14 The direct limit of a direct system of M-McCoy rings is also M-McCoy.

proof: Let \(D = \{R_i, \alpha_{ij}\}\) be a direct system of M-McCoy rings \(R_i\) for \(i \in I\) and ring homomorphisms \(\alpha_{ij} : R_i \to R_j\) for each \(i \leq j\) satisfying \(\alpha_{ij}(1) = 1\), where \(I\) is directed partially ordered set. Set \(R = \text{lim} R_i\) be direct
limit of D with $l_i : R_i \to R$ and $l_j \alpha_{ij} = l_i$. We will prove that R is M-McCoy ring. Take $x, y \in R$, then $x = l_i(x_i), y = l_j(y_j)$ for some $i, j \in I$ and there is $k \in I$ such that $i \leq k, j \leq k$. Define $x + y = l_k(\alpha_{ik}(x_i) + \alpha_{jk}(y_j))$ and $xy = l_k(\alpha_{ik}(x_i)\alpha_{jk}(y_j))$, where $\alpha_{ik}(x_i)$ and $\alpha_{jk}(y_j)$ are in R_k. Then R forms a ring with $l_i(0) = 0$ and $l_i(1) = 1$.

Now suppose $AB = 0$ for $A = \sum_{s=1}^{m}a_s g_s, B = \sum_{t=1}^{n}b_t h_t$ in $R[M]\{0\}$. There exist $i_s, j_t, k \in I$ such that $a_s = l_{i_s}(a_{i_s}), b_t = l_{j_t}(b_{j_t}), i_s \leq k, j_t \leq k$. So $a_s b_t = l_k(\alpha_{i_s,k}(a_{i_s})\alpha_{j_t,k}(b_{j_t}))$.

Thus $AB = (\sum_{s=1}^{m}l_k(\alpha_{i_s,k}(a_{i_s}))g_s)(\sum_{t=1}^{n}l_k(\alpha_{j_t,k}(b_{j_t}))h_t) = 0$. But R_k is M-McCoy ring and so there exist $0 \neq d \in R_k$ such that $Al_k(d) = 0$. Thus R is M-McCoy ring.

References

Received: April, 2008