On Hyper BCK-Algebras with Condition R.M.

Habib Harizavi

harizavi@scu.ac.ir

Abstract

In this paper, we introduce and prove some properties of the hyper BCK-algebras satisfying the implication

$$(\forall x, y, z \in H)(x \trianglelefteq y \implies x \circ z \trianglelefteq y \circ z).$$

Such hyper BCK-algebra is called the hyper BCK-algebra with condition R.M. We investigate the generated (weak)hyper BCK-ideals of the hyper BCK-algebras with condition R.M. and show that every weak hyper BCK-ideal is a hyper BCK-ideal. Also, we give a characterization of the elements of the generated hyper BCK-ideals.

Mathematics Subject Classification: 2000 Mathematics Subject Classification. 06F35, 03G25

Keywords: hyper BCK-algebra, (weak)hyper BCK-ideal, generated hyper BCK-ideal, condition R.M.

1 Introduction

The study of BCK-algebras was initiated by Y. Imai and K. Iséki[4] in 1966 as a generalization of the concept of set-theoretic difference and propositional calculi. Since then a great deal of literature has been produced on the theory of BCK-algebras. The hyper structure theory (called also multi algebras) was introduced in 1934 by F. Marty at the 8th congress of Scandinavian Mathematicians. In [5], Y.B. Jun et al. applied the hyper structures to BCK-algebras, and introduced the notion of a hyper BCK-algebra which is a generalization of BCK-algebra, and investigated some related properties. Now, we follow [1] and [5] and introduce the hyper BCK-algebra which satisfies the implication $\forall x, y, z \in H(x \trianglelefteq y \implies x \circ z \trianglelefteq y \circ z)$ and investigate some properties of it. In such hyper BCK-algebra, we study the generated hyper BCK-ideals and characterize its elements.
2 Preliminary Notes

Let \(H \) be a non-empty set endowed with a hyper operation \(\circ \) , that is, \(\circ \) is a function from \(H \times H \) to \(P^*(H) = P(H) \backslash \{\phi\} \). For two subset \(A \) and \(B \) of \(H \), denote by \(A \circ B \) the set \(\bigcup_{a \in A, b \in B} a \circ b \). We shall use \(x \circ y \) instead of \(x \circ \{y\}, \{x\} \circ y \), or \(\{x\} \circ \{y\} \).

Definition 2.1 [5] By a hyper \(BCK \)-algebra we mean a non-empty set \(H \) endowed with a hyper operation \(\circ \) and a constant \(0 \) satisfying the following axioms: for all \(x, y, z \in H \),

- \((H1)\) \((x \circ z) \circ (y \circ z) \leq x \circ y\),
- \((H2)\) \((x \circ y) \circ z = (x \circ z) \circ y\),
- \((H3)\) \(x \circ H \leq \{x\}\),
- \((H4)\) \(x \leq y\) and \(y \leq x\) imply \(x = y\),

where \(x \leq y\) is defined by \(0 \in x \circ y\) and for every \(A, B \subseteq H \), \(A \leq B\) is defined by \(\forall a \in A, \exists b \in B\) such that \(a \leq b\). In such case, we call \(\leq \) the hyper order in \(H\).

Theorem 2.2 [5, 5] In any hyper \(BCK\)-algebra \(H \), the following hold: for any \(x, y, z \in H \) and \(A, B \subseteq H \),

- \((a1)\) \(0 \circ 0 = \{0\}\),
- \((a2)\) \(0 \leq x\),
- \((a3)\) \(x \leq x\),
- \((a4)\) \(A \leq A\),
- \((a5)\) \(A \leq 0\) implies \(A = \{0\}\),
- \((a6)\) \(A \subseteq B\) implies \(A \leq B\),
- \((a7)\) \(0 \circ x = \{0\}\),
- \((a8)\) \(x \circ y \leq x\),
- \((a9)\) \(x \circ 0 = \{x\}\),
- \((a10)\) \(y \leq z\) implies \(x \circ z \leq x \circ y\),
- \((a11)\) \(x \circ y = \{0\}\) implies \((x \circ z) \circ (y \circ z) = \{0\}\) and \(x \circ z \leq y \circ z\),
- \((a12)\) \(A \circ \{0\} = \{0\}\) implies \(A = \{0\}\).

Definition 2.3 [5] Let \(H \) be a hyper \(BCK\)-algebra. Then a non-empty subset \(S \) of \(H \) is called a hyper subalgebra of \(H \) if \(S \) is a hyper \(BCK\)-algebra with respect to the hyper operation \(\circ \) on \(H\).
Definition 2.4 [4, 5] Let H be a hyper BCK-algebra. Then, a non-empty subset I of H with $0 \in I$ is called a weak hyper BCK-ideal of H if it satisfies: \((\forall x, y \in H)(x \circ y \subseteq I \text{ and } y \in I \implies x \in I)\); hyper BCK-ideal of H if it satisfies: \((\forall x, y \in H)(x \circ y \ll I \text{ and } y \in I \implies x \in I)\); reflexive hyper BCK-ideal of H if it is a hyper BCK-ideal of H and satisfies: \((\forall x \in H) x \circ x = \{0\}\); strong hyper BCK-ideal of H if it satisfies: \((\forall x, y \in H)(x \circ y \cap I \neq \emptyset \text{ and } y \in I \implies x \in I)\).

Theorem 2.5 [5] Let S be a non-empty subset of a hyper BCK-algebra H. Then S is a hyper subalgebra of H if and only if $x \circ y \subseteq S$ for all $x, y \in S$.

Theorem 2.6 [5] Let H be a hyper BCK-algebra. Then the set $S(H) := \{x \in H | x \circ x = \{0\}\}$ is a hyper subalgebra of H, which is called BCK-part of H.

Theorem 2.7 [5] Every hyper BCK-ideal of a hyper BCK-algebra is a weak hyper BCK-ideal.

Theorem 2.8 [6] Let A be a subset of a hyper BCK-algebra H. If I is a hyper BCK-ideal of H such that $A \ll I$, then A is contained in I.

Theorem 2.9 [1] Let Θ be a regular congruence relation on H and $H/\Theta = \{[x]_\Theta | x \in H\}$. Then H/Θ with hyper operation “\circ” and hyper order “$<$” which are defined as follow, is a hyper BCK-algebra which is called quotient hyper BCK-algebra,

\[[x]_\Theta \circ [y]_\Theta = \{[z]_\Theta : z \in x \circ y\}, \quad [x]_\Theta < [y]_\Theta \iff [0]_\Theta \in [x]_\Theta \circ [y]_\Theta. \]

Theorem 2.10 [1] Let Θ be a regular congruence relation on H. Then

\[[0]_\Theta \text{ is a reflexive hyper BCK-ideal of } H \iff \frac{H}{\Theta} \text{ is a BCK-algebra.} \]

3 Hyper BCK-algebras with the property R.M.

Definition 3.1 Let H be a hyper BCK-algebra. We say that H satisfies the right multiply property, or is with condition R.M., if the following implication holds:

\[(\forall x, y, z \in H)(x \ll y \implies x \circ z \ll y \circ z).\]
Example 3.2 (i) Consider a hyper BCK-algebra $H = \{0, 1, 2, 3\}$ with the following Cayley’s table:

<table>
<thead>
<tr>
<th>\circ</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>1</td>
<td>{1}</td>
<td>{0, 1}</td>
<td>{0}</td>
<td>{1}</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
<td>{2}</td>
<td>{0}</td>
<td>{2}</td>
</tr>
<tr>
<td>3</td>
<td>{3}</td>
<td>{1, 3}</td>
<td>{1}</td>
<td>{0, 3}</td>
</tr>
</tbody>
</table>

It is easy to verify that H satisfies condition R.M.

(ii) Consider a hyper BCK-algebra $H = \{0, 1, 2\}$ with the following Cayley’s table:

<table>
<thead>
<tr>
<th>\circ</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>1</td>
<td>{1}</td>
<td>{0, 1}</td>
<td>{0}</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
<td>{2}</td>
<td>{0}</td>
</tr>
</tbody>
</table>

Then H does not satisfy condition R.M., because $1 \preceq 2$ but $\{0, 1\} = 1 \circ 2 \npreceq 2 \circ 2 = \{0\}$

Lemma 3.3 Let H be a hyper BCK-algebra with condition R.M. and $A, B \subseteq H$. If $A \preceq B$, then $A \circ x \preceq B \circ x$ for any $x \in H$.

Proof. Let $a \in A$. Since $A \preceq B$, we obtain $a \preceq b$ for some $b \in B$, and so for any $x \in H$, $a \circ x \preceq b \circ x$ by hypothesis. This implies $A \circ x \preceq B \circ x$ for any $x \in H$.

Note that for any hyper BCK-algebra H and $A \subseteq H$, if A is a \preceq-right scaler of H then $A \subseteq S(H)$ (see [2, Proposition 3.4]), but the converse is not true, in general. The following proposition shows that the converse of the above fact is true whenever the hyper BCK-algebra satisfies condition R.M.

Lemma 3.4 Let H be a hyper BCK-algebra with condition R.M. If $A \subseteq S(H)$, then A is a \preceq-right scaler of H.

Proof. Let $a \in A$ and $x \preceq a$ for some $x \in H$. Then $a \in S(H)$, and so $a \circ a = \{0\}$ by Theorem 2.6. On the other hand, by the R.M. property of H, $x \preceq a$ implies $x \circ a \preceq a \circ a = \{0\}$. Hence $x \circ a = \{0\}$ by Theorem 2.2(a5). Therefore A is \preceq-right scaler.

Proposition 3.5 Let H be a hyper BCK-algebra. Then $S(H)$ is a hyper BCK-algebra with condition R.M.
Proof. By Theorem 2.6, $S(H)$ is a hyper BCK-algebra. Now, we show that $S(H)$ satisfies condition R.M. Suppose that $x, y \in S(H)$ such that $x \ll y$ and let z be an arbitrary element in $S(H)$. Since $S(H)$ is a \ll-right scalar by Lemma 3.4, it follows that $x \circ y = \{0\}$. Hence by Definition 2.1(H1), we have

$$(x \circ z) \circ (y \circ z) \ll x \circ y = \{0\}.$$

Thus $(x \circ z) \circ (y \circ z) = \{0\}$ and so $x \circ z \ll y \circ z$. Therefore $S(H)$ satisfies condition R.M.

Definition and Lemma 3.6 \cite{3} Let H be a hyper BCK-algebra.

(i) An element a in H is called an atom of H if it satisfies:

$$(\forall x \in H)(x \ll a \implies x = 0 \text{ or } x = a).$$

(ii) A subset A of H is called atomic if each element of A is atom.

If a hyper BCK-algebra H is atomic, then

(i) $x \circ y \subseteq \{0, x\}$ for all $x, y \in H$,

(ii) $x \circ y = \{x\}$ for all $x, y \in H$ with $x \neq y$.

Proposition 3.7 Every atomic hyper BCK-algebra satisfies condition R.M.

Proof. Let H be an atomic hyper BCK-algebra and let $x, y \in H$ be such that $x \ll y$. Then, since H is atomic, $x = 0$ or $x = y$. On the other hand, by Lemma 3.6, we have $x \circ z \subseteq \{0, x\}$ and $y \circ z \subseteq \{0, y\}$ for any $z \in H$. If $x = 0$, then clearly $x \circ z = 0 \circ z = \{0\} \ll y \circ z$ for any $z \in H$. If $x = y$, then $x \circ z = y \circ z$ for any $z \in H$. Therefore H satisfies condition R.M.

The following example shows that the converse of Proposition 3.7 is not true, in general.

Example 3.8 Consider a hyper BCK-algebra $H = \{0, 1, 2\}$ with the following Cayley’s table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>${0}$</td>
<td>${0}$</td>
<td>${0}$</td>
</tr>
<tr>
<td>1</td>
<td>${1}$</td>
<td>${0, 1}$</td>
<td>${0}$</td>
</tr>
<tr>
<td>2</td>
<td>${2}$</td>
<td>${2}$</td>
<td>${0, 2}$</td>
</tr>
</tbody>
</table>

It is easy to verify that H satisfies condition R.M. but it is not atomic.

Proposition 3.9 Let $H := H_1 \oplus H_2$ be the union of two hyper BCK-algebras H_1 and H_2. Then H satisfies condition R.M. if and only if H_1 and H_2 satisfy condition R.M.
Proof. We note that the hyper BCK-algebra $(H = H_1 \oplus H_2; \ast, 0)$, the union of two hyper BCK-algebras $(H_1; \ast_1, 0)$ and $(H_2; \ast_2, 0)$, is defined as follows: for any $x, y \in H$,

$$x \circ y := \begin{cases} x \circ_1 y & \text{if } x, y \in H_1, \\ x \circ_2 y & \text{if } x, y \in H_2, \\ \{x\} & \text{otherwise} \end{cases}$$

If H satisfies condition R.M., then, since $H_1, H_2 \subseteq H$, they also satisfy the R.M. property.

Conversely, suppose that both H_1 and H_2 satisfy the R.M. property. Let $x, y \in H$ be such that $x \ll y$. Then, it follows from Definition of H that $x = 0$ or x, y in the same hyper BCK-algebra H_1 or H_2. This implies that, in any case $x \circ z \ll y \circ z$ for all $z \in H$. Therefore H satisfies condition R.M.

Proposition 3.10 Let $H = H_1 \times H_2$ be the product of two hyper BCK-algebras H_1 and H_2. Then H satisfies condition R.M. if and only if both H_1 and H_2 satisfy the R.M. property.

Proof. Using the Definition of the product of two hyper BCK-algebras, the proof is easy.

Proposition 3.11 Let $f : H \rightarrow K$ be a monomorphism of hyper BCK-algebras. If K satisfies condition R.M., then so is H.

Proof. By the first homomorphism theorem, we have $H \cong f(H)$. Clearly $f(H)$ satisfies condition R.M. Therefore H also satisfies condition R.M.

Now, we consider condition R.M. in the quotient hyper BCK-algebras and give a condition for congruence relation Θ on hyper BCK-algebra H such that H and $\frac{H}{\Theta}$ are the same related to condition R.M.

Definition 3.12 Let Θ be a congruence relation on hyper BCK-algebra H. Then Θ is called strongly regular if whenever $x \circ y \Theta 0$ then $0 \in x \circ y$.

Lemma 3.13 Every strongly regular relation on a hyper BCK-algebra is a regular relation.

Proof. Let Θ be a strongly regular relation on hyper BCK-algebra H, and let $x, y \in H$ be such that $x \circ y \Theta 0$ and $y \circ x \Theta 0$. Then $0 \in x \circ y$ and $0 \in y \circ x$ and so $x = y$ by the Definition 2.1(a4). Hence $x \Theta y$ by the reflexivity of Θ. Therefore Θ is a regular relation on H.

Theorem 3.14 Let Θ be a strongly regular relation on a hyper BCK-algebra H. Then H satisfies condition R.M. if and only if $\frac{H}{\Theta}$ satisfies condition R.M.
On hyper BCK-algebras with condition R.M.

4 On properties of hyper BCK-ideals

It is well known that every hyper BCK-ideal is a weak hyper BCK-ideal, but the converse is not true in general. The following proposition shows that the converse is true whenever the hyper BCK-algebra satisfies condition R.M.

Proposition 4.1 Assume that H satisfies condition R.M. and I is contained in the BCK-part $S(H)$ of H. Then I is a weak hyper BCK-ideal of H if and only if it is a hyper BCK-ideal of H.

Proof. By Theorem 2.7, we only need to prove the necessity. Assume that H satisfies condition R.M. and I is a weak hyper BCK-ideal of H. Let $x, y \in H$ be such that $x \circ y \leq I$ and $y \in I$. Then for any $t \in x \circ y$, there is $i \in I$ such that $t \leq i$, and so $t \circ i \leq i \circ i$ by condition R.M. of H. Since $i \in S(H)$, we obtain $i \circ i = \{0\}$. Hence $t \circ i \leq \{0\}$ and so $t \circ i = \{0\}$. Thus $t \circ i \subseteq I$. Hence, since I is a weak hyper BCK-ideal of H and $i \in I$, we get $t \in I$. Thus $x \circ y \subseteq I$. It follows from $y \in I$ and I is a weak hyper BCK-ideal of H that $x \in I$. Therefore I is a hyper BCK-ideal of H.

Definition and Theorem 4.2 [5] Let A be a subset of a hyper BCK-algebra. The smallest hyper BCK-ideal containing A is called the hyper BCK-ideal generated by A, and is denoted by (A). Then

$$(A) \supseteq \{x \in H|(x \circ a_1) \circ a_2 \circ ... \circ a_n = \{0\} \text{ for some } a_1, a_2, ..., a_n \in A\}.$$
In the following Theorem, we give a characterization of the elements of the hyper BCK-ideal generated by A.

Theorem 4.3 Let H be a hyper BCK-algebra with condition R.M., and let A be a subset of the BCK-part $S(H)$ of H and $x \circ y < \infty$ for all $x, y \in H$. Then

$$(A) = \{x \in H : (\ldots((x \circ a_1) \circ a_2)\ldots) \circ a_n = \{0\}, n \in N \text{ and } a_1, \ldots, a_n \in A\}$$

Proof. We denote

$$B := \{x \in H : (\ldots((x \circ a_1) \circ a_2)\ldots) \circ a_n = \{0\}, n \in N \text{ and } a_1, \ldots, a_n \in A\}$$

and prove that $(A) = B$. Since $A \subseteq S(H)$, we have $a \circ a = \{0\}$ for all $a \in A$. This implies that $a \in B$ for all $a \in A$. Hence $A \subseteq B$. Now we show that B is a hyper BCK-ideal of H. Let $x, y \in H$ be such that $x \circ y \ll B$ and $y \in B$. Since $|x \circ y| < \infty$, we may suppose that $x \circ y = \{t_1, t_2, \ldots, t_m\}$. For every $t_i \in x \circ y$ there exists $z_i \in B$ such that $t_i \ll z_i$. It follows from $z_i \in B$ that $(\ldots((z_i \circ a_1^i) \circ a_2^i)\ldots) \circ a_n^i = \{0\}$ for some $a_1^i, \ldots, a_n^i \in A$. Using condition R.M. of H and $t_i \ll z_i$, we get $t_i \circ a_1^i \ll z_i \circ a_1^i$. Also, by condition R.M. of H and Lemma 3.3, it follows from $t_i \circ a_1^i \ll z_i \circ a_1^i$ that $(t_i \circ a_1^i) \circ a_2^i \ll (z_i \circ a_1^i) \circ a_2^i$. Repeating this way for a_3^i, \ldots, a_n^i, we obtain

$$(\ldots((t_i \circ a_1^i) \circ a_2^i)\ldots) \circ a_n^i \ll (\ldots((z_i \circ a_1^i) \circ a_2^i)\ldots) \circ a_n^i = \{0\}.$$

Hence $(\ldots((t_i \circ a_1^i) \circ a_2^i)\ldots) \circ a_n^i = \{0\}$. Using Theorem 2.2(a7) and Definition 2.1(H2), we get

$$(\ldots((t_i \circ a_1^i)\ldots) \circ a_1^m)\ldots) \circ a_1^m = \{0\}$$

for all $t_i \in x \circ y$. Thus we have

$$(\ldots(\ldots((x \circ y) \circ a_1^i)\ldots) \circ a_1^m)\ldots) \circ a_1^m \circ a_n^m \circ a_1^m = \{0\}$$

Hence, it follows from $y, a_1^1, \ldots, a_n^m \in B$ that $x \in B$. Therefore B is a hyper BCK-ideal of H containing A. Since (A) is the smallest hyper BCK-ideal containing A, we obtain $(A) \subseteq B$. By Theorem 4.2, obviously $B \subseteq (A)$. Therefore $B = (A)$, which completes the proof.

Definition 4.4 Let H be a hyper BCK-algebra and $A \subseteq H$. An element $a \in A$ is called maximum element of A if $x \ll a$ for all $x \in A$.
For any elements x, y of a hyper BCK-algebra H, we denote
\[x \circ^n y = (((x \circ y) \circ y) \circ ...) \circ y \]
in which y occurs n times.

Proposition 4.5 Let H be a hyper BCK-algebra with condition $R.M.$, and let A be a subset of BCK-part $S(H)$ of H. If $a \in A$ is the maximum element of A, then
\[(A) = \{ x \in H : x \circ^n a = \{0\}, \text{ for some } n \in N \}. \]

Proof. Let $a \in A$ be the maximum element of A. Hence for any $x \in A$, we have $x \ll a$. Using condition $R.M.$ and the fact that $A \subseteq S(H)$, we have $x \circ a \ll a \circ a = \{0\}$, which implies
\[x \circ a = \{0\}, \text{ for all } x \in A. \tag{1} \]

Now, we denote $B := \{ x \in H : x \circ^n a = \{0\}, \text{ for some } n \in N \}$. Using the Theorem 4.2, we get $B \subseteq (A)$. To prove the converse of inclusion, let $x \in (A)$. Then, it follows from Theorem 4.3 that there exist $a_1, ..., a_n \in A$ such that $\ldots((x \circ a_1) \circ a_2)\ldots) \circ a_n = \{0\}$. This implies $\ldots((x \circ a_1) \circ a_2)\ldots) \circ a_{n-1} \ll a_n$. Using condition $R.M.$ and (1), we get $(\ldots((x \circ a_1) \circ a_2)\ldots) \circ a_{n-1} \ll a_n \circ a = \{0\}$. Hence $\ldots((x \circ a_1) \circ a_2)\ldots) \circ a_{n-1} \ll a_n = \{0\}$, and so $\ldots((x \circ a_1) \circ a_2)\ldots) \circ a_{n-1} = \{0\}$ by Definition 2.1(H2). It follows that $\ldots((x \circ a_1) \circ a_2)\ldots) \circ a_{n-2} \ll a_{n-1}$. Similarly, we can obtain $\ldots((x \circ a_1) \circ a_2)\ldots) \circ a_{n-2} \circ a = \{0\}$, and so
\[(\ldots((x \circ a_2) \circ a_1)\ldots) \circ a_{n-2} = \{0\}. \]

Repeating this process for $a_{n-2}, ..., a_1$, we get $x \circ^n a = \{0\}$. Hence $x \in B$ by the Definition of B. Thus $[A] \subseteq B$. Therefore $[A] = B$, which completes the proof.

Definition and Lemma 4.6 [2] Let H be a hyper BCK-algebra which the its hyper order \ll is transitive. Then H is called a hyper BCK-semi lattice if $x \land y := \inf \{x, y\}$ exists and belong to H for any $x, y \in H$. If for $x, y, a \in H$ and $m, n \in N$, $a \circ^m x = \{0\}, a \circ^n y = \{0\}$ and $x \land y$ is a \ll-right scalar element of H, then there exists a natural number p such that $a \circ^p (x \land y) = \{0\}$.

Proposition 4.7 Let H be a hyper BCK-semi lattice with condition $R.M.$, and let A, B be subsets of the BCK-part $S(H)$ of H. If $a \in A$ and $b \in B$ are the maximum elements of A and B respectively, then
\[(A) \cap (B) = \{ x \in H : x \circ^n (a \land b) = \{0\}, \text{ for some } n \in N \}. \]
Proof. Denote by C the set $\{x \in H : x \circ^n (a \land b) = \{0\} \text{ for some } n \in N\}$. It suffices to prove that $(A \cap B) = C$. Since $a \land b \ll a$, it follows from Theorem 2.8 that $a \land b \in (A]$. This implies $C \subseteq (A]$. Similarly, we have $C \subseteq (B]$. Hence $C \subseteq (A] \cap (B]$. To prove the converse of inclusion, let $x \in (A] \cap (B]$. Then, by Theorem 4.5, there exist $s, t \in N$ such that $x \circ^s a = \{0\}$ and $x \circ^t b = \{0\}$. Since $a \land b$ is an element of BCK-part, it follows from Lemma 3.4 that $a \land b$ is a \ll-right scaler of H. Hence, by Lemma 4.6, there exists $p \in N$ such that $x \circ^p (a \land b) = \{0\}$. This implies $x \in C$. Thus $[A] \cap [B] \subseteq C$. Therefore $[A] \cap [B] = C$, which completes the proof.

ACKNOWLEDGEMENTS. I would like to thanks the referee for his refereeing and valuable suggestion.

References

Received: August, 2009