The Least Group Congruences on Eventually Regular Semigroups

Supavinee Sattayaporn

Department of Mathematics
Faculty Science and technology
Uttaradit Rajabhat University
Uttaradit 53000, Thailand
supavineeuru@windowslive.com

Abstract

In this paper, we give a group congruence and the least group congruence on eventually regular semigroup by using weakly self-conjugate subsemigroups which are analogous to the characterization of a group congruence on eventually regular semigroups considered by Rao and Lakshmi [4].

Mathematics Subject Classification: 20M10

Keywords: eventually regular semigroup, group congruence

1 Introduction

A semigroup S is said to be eventually regular if every element of S has a power which is regular by Edward [3]. Throughout this paper S is an eventually regular semigroup and $E(S)$ denote the set of all idempotents of S. For every $a \in S$, $V(a) := \{ x \in S \mid a = axa, x = xax \}$ is the set of all inverses of element a and $W(a) := \{ x \in S \mid x = xax \}$ is the set of all weak inverses of element a. For $a \in S$, by "a^n is a-regular" we mean that n is the smallest positive integer for which a^n is regular. A semigroup S is called E-semigroup if $E(S)$ forms a semigroup of S. A congruence ρ on a semigroup S is called a group congruence if S/ρ is a group.

In 1983, Edward [3] characterized many results of eventually semigroups and finite semigroups. Basic properties and some results of eventually regular semigroups were given by Edward [3], Howie [1], Hall [5], Luo and Li [6] and Yang [7]. Rao and Lakshmi [4] described some group congruences on an eventually regular semigroup in which they use self-conjugate, that is
if for all \(a \in S, (a^n)' \in V(a^n) \) where \(a^n \) is a-regular, \(aHa^{-1}(a^n)' \subseteq H \) and \(a^{n-1}(a^n)'Ha \subseteq H \). In this paper, we investigated a group congruence and least group congruence on eventually regular semigroup and we replace the set \(V(a^n) \) as in [16] by the set of all weak inverses \(W(a^n) \) and replace self-conjugate subset \(H \) of an eventually regular semigroup \(S \) by weakly self-conjugate subset of its.

A subset \(H \) of a semigroup \(S \) is full if \(E(S) \subseteq H \). A subsemigroup \(H \) of an eventually regular semigroup \(S \) is called weakly self-conjugate if for all \(a \in S, (a^n)' \in W(a^n) \) where \(a^n \) is a-regular, \(aHa^{-1}(a^n)' \subseteq H \) and \(a^{n-1}(a^n)'Ha \subseteq H \). For any subset \(H \) of a semigroup \(S \), let \(H_\omega = \{ a \in S \mid ha \in H \text{ for some } h \in H \} \) which is called the closure of \(H \). If \(H \) is a subsemigroup of \(S \), then \(H \subseteq H_\omega \). A subsemigroup \(H \) of a semigroup \(S \) is closed if \(H = H_\omega \).

For any congruence \(\rho \) on a semigroup \(S \), the kernel of \(\rho \) is the set
\[
\ker \rho := \{ a \in S \mid a \rho \in E(S/\rho) \} = \{ a \in S \mid (a, a^2) \in \rho \}.
\]
If \(\rho \) is a group congruence on a semigroup \(S \), then \(a \in \ker \rho \) if and only if \((a, e) \in \rho \) for some (all) \(e \in E(S) \). For basic concepts in semigroup theory, see [1].

2 Preliminary

The following results are used in this research.

Lemma 2.1. Let \(S \) be a semigroup and \(a \in S \). If \(a^n \) is a-regular then \(W(a^n) \neq \emptyset \).

Proof. It is easy to verify. \(\square \)

Proposition 2.2. If \(S \) is an \(E \)-semigroup, \(a^n \) is a-regular and \(e, f \in E(S) \), \((a^n)' \in W(a^n) \), then
\[
\begin{align*}
(1) & \ e(a^n)', (a^n)'f, f(a^n)'e \in W(a^n), \\
(2) & \ a^n e(a^n)', (a^n)'ea^n \in E(S),
\end{align*}
\]
The least group congruences on eventually regular semigroups

(3) \(ae(a^{n-1})(a^n)'a^{n-1}(a^n)'ea \in E(S)\),
(4) \(a^{n-1}(a^n)', (a^n)'a^{n-1} \in W(a)\),
(5) \(fa^{n-1}(a^n)'e, fa^{n-1}(a^n)'e \in W(a)\),
(6) \(f(a^n)'a^{n-1}, (a^n)'a^{n-1}e, f(a^n)'a^{n-1}e \in W(a)\).

Proposition 2.3. If \(S\) is a semigroup, \(((ac)^n)' \in W((ac)^n)\) and \((ac)^n\) is ac-regular, then \(c(ac)^{n-1}((ac)^n)'a\) and \(c((ac)^n)'(ac)^{n-1}a \in E(S)\).

Proof. Let \(((ac)^n)' \in W((ac)^n)\). Then
\[
(c(ac)^{n-1}((ac)^n)'a)(c(ac)^{n-1}((ac)^n)'a) = c(ac)^{n-1}((ac)^n)'ac(ac)^{n-1}((ac)^n)'a = c(ac)^{n-1}[(ac)^n]'(ac)^n((ac)^n)'a = c(ac)^{n-1}((ac)^n)'a.
\]

Similarly, we have \(c((ac)^n)'(ac)^{n-1}a \in E(S)\). \(\Box\)

Proposition 2.4. If \(S\) is an E-semigroup, \(a^n\) is a-regular and \(b^m\) is b-regular, then \(W(b^m)W(a^n) \subseteq W(a^nb^m)\). If \(S\) is commutative then \(W(a^nb^m) = W((ab)^n)\).

Proof. Let \((a^n)' \in W(a^n), (b^m)' \in W(b^m)\). Then
\[
(b^m)'(a^n)'a^nb^m(b^m)'(a^n)' = (b^m)'b^m(b^m)'(a^n)'a^nb^m(b^m)'(a^n)'a^n(a^n)' = (b^m)'b^m(b^m)'(a^n)'a^n(a^n)' = (b^m)'(a^n)'.
\]

Therefore \((b^m)'(a^n)' \in W(a^nb^m)\) and so \(W(b^m)W(a^n) \subseteq W(a^nb^m)\). If \(S\) is commutative semigroup then \(W(a^nb^m) = W((ab)^n)\). \(\Box\)

3 Main Results

The next result, we show that \(\rho_H\) is a group congruence on an eventually regular semigroup which alternating as in \([4]\).

Theorem 3.1. [4] If \(S\) is an eventually regular semigroup then every group congruence on \(S\) is of the form \((a, b) \in \beta_H \iff ab^{m-1}(b^m)' \in H\) where \(H\) is full closed self-conjugate subsemigroup of \(S\) and \((b^m)' \in V(b^m)\).

The following theorem we give a group congruence on an eventually regular semigroup \(S\) by replace for some \((b^m)' \in V(b^m)\) by for all \((b^m)' \in W(b^m)\) as follows.
Theorem 3.2. If S is an eventually regular semigroup and $H \in \mathcal{C}$, then a relation

$$\rho_H := \{(a,b) \in S \times S \mid ab^{m-1}(b^m)' \in H \text{ for all } (b^m)' \in W(b^m)$$

where b^m is $b-$regular\}

is a group congruence on S.

Proof. Since $aa^{n-1}(a^n)' \in E(S) \subseteq H$ for all $a \in S$, a^n is a-regular and $(a^n)' \in W(a^n)$, we have $a \rho_H a$.

To show that ρ_H is symmetric, let $(a,b) \in \rho_H$, this implies that $ab^{m-1}(b^m)' \in H$, where b^m is b-regular and $(b^m)' \in W(b^m)$. Let $(a^n)' \in W(a^n)$ where (a^n) is a-regular. Since H is weakly self-conjugate, $(ab^{n-1}(b^m)')(ba^{n-1}(a^n)') \in H$. Since $H = H_\omega$, we have $ba^{n-1}(a^n)' \in H$, so ρ_H is symmetric.

If $ab^{m-1}(b^m)'$ and $bc^{k-1}(c^k)' \in H$ where b^m is b-regular and c^k is c-regular and $(b^m)' \in W(b^m), (c^k)' \in W(c^k)$, then $ab^{m-1}(b^m)'bc^{k-1}(c^k)' \in H$. Let $(a^n)' \in W(a^n)$ where a^n be a-regular. As H is a weakly self-conjugate, $a^n-1(a^n)'bc^{k-1}(c^k)'a \in H$, it follows that $c^{k-1}(c^k)'a \in H$. Again $c^{k-1}(c^k)'a \in H$ and $H = H_\omega$ imply $ac^{k-1}(c^k)' \in H$ which proves transitive of ρ_H. Hence ρ_H is an equivalence relation.

To show that ρ_H is a compatible, let $(a,b) \in \rho_H$ and $c \in S$. Then $ab^{m-1}(b^m)' \in H$ for all $b^m \in W(b^m)$ where b^m is b-regular.

If $(a^n)' \in W(a^n)$ where a^n is a-regular, we have $ba^{n-1}(a^n)' \in H$. Let $(bc)^k$ be bc-regular and $((bc)^k)' \in W((bc)^k)$ and c^k be c-regular and $(c^k)' \in W(c^k), b^k$ be b-regular and $(b^k)' \in W(b^k)$. By Proposition 2.3, we have $c((bc)^{k-1}((bc)^k)'b \in E(S) \subseteq H$. By H is a weakly self-conjugate, we have $ac((bc)^{k-1}((bc)^k)'ba^{n-1}(a^n)' \in H$ and so $ac((bc)^{k-1}((bc)^k)' \in H$, we get ρ_H is a right compatible. We can show that ρ_H is a left compatible. Hence ρ_H is a congruence.

Fix $x \in H$. Let $a \in S$. By H is a weakly self-conjugate, we have $axa^{n-1}(a^n)'$, $xa^{n-1}(a^n)' \in H$ where a^n is a-regular and $(a^n)' \in W(a^n)$, so $(ax,a), (xa,a) \in \rho_H$. Hence $x \rho_H$ is the identity element of S/ρ_H. For any $a \in S$ and let $e \in E(S)$, if a^n is a-regular, we have $a^n-1(a^n)' \rho_H a \rho_H = e \rho_H = a \rho_H(a^n-1)(a^n)' \rho_H$.

Hence ρ_H is a group congruence on S. \hfill \Box

Next, we can prove a group congruence on an eventually regular semigroup S by using full, weakly self-conjugate subsemigroup H of S.

Theorem 3.3. If S is an eventually regular semigroup and $H \in \mathcal{C}$, then a relation

$$\rho_H^* := \{(a,b) \in S \times S \mid xa = by \text{ for some } x, y \in H\}$$

is a group congruence on S.
Proof. To show that ρ^*_H is a congruence on S, let $a, b, c \in S$. Let $(a^n)' \in W(a^n)$ where a^n is a-regular. Since H is full, $(a^n)(a^n)', a(a^{n-1})(a^n)' \in E(S) \subseteq H$. Note that $[a^n(a^n)']a = a[(a^{n-1})(a^n)']$, we have $a\rho^*_H a$.

Suppose that $a\rho^*_H b$, then there exist $x, y \in H$ such that $xa = by$. Let $(a^n)' \in W(a^n)$ where a^n is a-regular and $(b^m)' \in W(b^m)$ where b^m is b-regular. Then $[(a^n)(a^n)']byb^{m-1}(b^m)'b = a\rho^*_H b$. Since $x\rho^*_H y$, there exist $(a^n)(a^n)'xa)b^{m-1}(b^m)'b \in H$, we have $b\rho^*_H a$.

To show that ρ^*_H is transitive, let $a\rho^*_H b$ and $b\rho^*_H c$. Then there exist $x, y, z, w \in H$ such that $xa = by$ and $zb = cw$. Thus $(zx)a = c(wy)$ and $zx, wy \in H$, it follows that $a\rho^*_H c$ and ρ^*_H is transitive.

Next, we want to show that ρ^*_H is a compatible, let $a\rho^*_H b$ and $c \in S$. Then there exist $x, y \in H$ such that $xa = by$. Let $(b^n)' \in W(b^n)$ and $(c^n)' \in W(c^n)$ where b^n is b-regular and c^n is c-regular. Then $b\rho^*_H c$. Clearly, by (1), $(c^n)\rho^*_H (b^n)'x = b (c^n)'(b^n)'(b^m)'byc$. Since H is a weakly self-conjugate, we have $bc(b^n)'(b^n)'x, c^{-1}(c^n)'(b^n)'byc \in H$. Hence ρ^*_H is a right compatible. Similarly, we can show that ρ^*_H is a left compatible, so ρ^*_H is a congruence on S.

Finally, we shall show that S/ρ^*_H is a group. Fix $x \in H$. Claim that $x\rho^*_H$ is the identity element of S/ρ^*_H. Let $a \in S$ and $(a^n)' \in W(a^n)$ where a^n is a-regular. Since $xa\rho^*_H a \in H$, we have $[xa\rho^*_H a]a = (ax)(a^n)'a$, so $(a, ax) \in \rho^*_H$. Since $xa\rho^*_H a \in H$, $x(a\rho^*_H a) = (xa)(a^n)'a$ and so $(a, xa) \in \rho^*_H$. Hence $x\rho^*_H$ is the identity of S/ρ^*_H.

Clearly, $x\rho^*_H y \rho^*_H = e\rho^*_H$ for all $x, y \in H, e \in E(S)$. Then $(a^n-1(a^n)')\rho_H = (a^n-1(a^n))\rho_H = e\rho^*_H = (a^n-1(a^n)')\rho^*_H = a\rho^*_H (a^n-1(a^n)')\rho^*_H$.

Therefore $a^n-1(a^n)\rho^*_H$ is an inverse of $a\rho^*_H$. Hence S/ρ^*_H is a group.

Remark. From Theorem 3.3, we see that $H \subseteq \text{Ker}\rho^*_H$ for every $H \in \mathcal{C}$.

Lemma 3.4. Let S be an eventually regular semigroup.

1. If $H \in \mathcal{C}$ then $\text{Ker}\rho^*_H = H_\omega$.
2. If $H \in \overline{\mathcal{C}}$ then $\text{Ker}\rho^*_H = H_\omega$.
3. If ρ is a group congruence on S then $\text{Ker}\rho \in \mathcal{C} \subseteq \overline{\mathcal{C}}$ and $\rho = \rho_{\text{Ker}\rho}$.

Proof. (1) Suppose that $H \in \mathcal{C}$. By Theorem 3.3, ρ^*_H is a group congruence on S. Let $a \in \text{Ker}\rho^*_H$. Then $(a, e) \in \rho^*_H$ for all $e \in E(S)$. Let $e \in E(S)$. Then $xa = ey$ for some $x, y \in H$. Since $ey \in H$, we get $xa \in H$. Thus $a \in H_\omega$.

Conversely, let $a \in H_\omega$. Then there exists $h \in H$ such that $ha \in H$. For any $(a^n)' \in W(a^n)$ where a^n is a-regular $[(a^n(a^n)')h]a = ((a^n')a)h$. Since $(a^n)(a^n)'h, (a^n)'H \in H$, so $((a^n)(a^n)'a) \in \rho^*_H$ and $a \in \text{Ker}\rho^*_H$. Therefore $\text{Ker}\rho^*_H = H_\omega$.

(2) Clearly, by (1), $H = H_\omega = \text{Ker}\rho^*_H$.

(3) Let $e \in E(S)$. Then $(e, e) \in \rho$, so $e \in \text{Ker}\rho$. Thus $\text{Ker}\rho$ is full. Let $x \in \text{Ker}\rho$. Then $(x, e) \in \rho$ for all $e \in E(S)$. Let $a \in S, (a^n)' \in W(a^n)$ where
a^n is a-regular. Then $(a^{n-1}(a^n)'xa, a^{n-1}(a^n)'ea) \in \rho$, and $a^{n-1}(a^n)'xap = (a^{n-1}(a^n)'eap = a^{n-1}(a^n)'epepa = a^{n-1}(a^n)'aep = a^{n-1}(a^n)'aep$ where $e\rho$ is the identity element in S/ρ. Then $(a^{n-1}(a^n)'xa, a^{n-1}(a^n)'a) \in \rho$, so $a^{n-1}(a^n)'xa \in \text{Ker}\rho$. Similarly, we can show that $ax(a^{n-1})(a^n)' \in \text{Ker}\rho$.

Hence $\text{Ker}\rho$ is a weakly self-conjugate subset of S.

Next, we shall show that $\text{Ker}\rho$ is a subsemigroup of S. Let $a, b \in \text{Ker}\rho$. Then $ap = ep, bp = ep$ for all $e \in E(S)$. Thus $(ab)\rho = a\rho b = epep = ep$ for all $e \in E(S)$. Hence $ab \in \text{Ker}\rho$. That is, $\text{Ker}\rho \in \mathcal{C}$.

Let $x \in (\text{Ker}\rho)_\omega$. Then there exists $y \in \text{Ker}\rho$ such that $yx \in \text{Ker}\rho$. Thus $(yx)\rho = ep$ for all $e \in E(S)$ and $ypxp = (yx)\rho = ep$. Since $y \in \text{Ker}\rho$, we have $yp = ep$. Hence $xp = ep$, so $x \in \text{Ker}\rho$. Therefore $(\text{Ker}\rho)_\omega = \text{Ker}\rho$, so $\text{Ker}\rho \in \mathcal{C}$.

Finally, we shall show that $\rho = \rho_{\text{Ker}\rho}^*$. Let $(a, b) \in \rho$ and $(a^n)' \in W(a^n)$ where a^n is a-regular. Then $(a(a^n)'a^{n-1}, b(a^n)'a^{n-1}) \in \rho$. We get $b(a^n)'a^{n-1} \in \text{Ker}\rho$, and $(b(a^n)'a^{n-1}) = b((a^n)'a^{n-1}) = (a^n)'a^{n-1}$). Then $(a, b) \in \rho_{\text{Ker}\rho}^*$ and so $\rho \subseteq \rho_{\text{Ker}\rho}^*$.

Suppose that $(a, b) \in \rho_{\text{Ker}\rho}^*$. Then $xa = by$ for some $x, y \in \text{Ker}\rho$. Thus $xp = ep = yp$ for all $e \in E(S)$. Since ρ is a group congruence, $b(y)p = b(e)p = b\rho$ and so $(a, b) \in \rho$. Hence $\rho = \rho_{\text{Ker}\rho}^*$.

Corollary 3.5. Let S be an eventually regular semigroup. Then ρ is a group congruence on S if and only if there exists $K \in \overline{\mathcal{C}}$ such that $\rho = \rho_K^*$ where $K = \text{Ker}\rho$.

Proof. It is similar to the proof of Theorem 3.3 and Lemma 3.4(3). \hfill \Box

Lemma 3.6. Let S be an eventually regular semigroup.

1. If $H \subseteq K \subseteq S$ then $\rho_H^* \subseteq \rho_K^*$.
2. If $H, K \in \mathcal{C}$ such that $\rho_H^* \subseteq \rho_K^*$, then $H \subseteq K$.

(hence for $H, K \in \overline{\mathcal{C}}, H \subseteq K$ if and only if $\rho_H^* \subseteq \rho_K^*$).

Proof. The proof as in [2]. \hfill \Box

By Lemma 3.4 and 3.6, we have the least group congruence on an eventually regular semigroups.

Theorem 3.7. Let S be an eventually regular semigroup. If U is the smallest element in \mathcal{C} then ρ_U^* is the least group congruence on S.

Proof. The proof as in [2]. \hfill \Box

Combine the Theorem 3.2, 3.3, Corollary 3.5 and Lemma 3.6, we obtain
The least group congruences on eventually regular semigroups

Theorem 3.8. Let S be an eventually regular semigroup and let ρ be a group congruence on S with $H := \text{Ker}\rho$. Assume that a^n is a-regular and b^m is b-regular. Then the following statements are equivalent.

1. $a \rho b$.
2. For all $(a^n)' \in W(a^n), ba^{n-1}(a^n)' \in H$.
3. For all $(a^n)' \in W(a^n), a^{n-1}(a^n)'b \in H$.
4. For all $(b^m)' \in W(b^m), b^{m-1}(b^m)'a \in H$.
5. For all $(b^m)' \in W(b^m)$ there exists $x \in H$, $axb^{m-1}(b^m)' \in H$.
6. For all $(a^n)' \in W(a^n)$ there exists $x \in H$, $bxa^{n-1}(a^n)' \in H$.
7. For all $(a^n)' \in W(a^n)$ there exists $x \in H$, $a^{-1}(a^n)'xb \in H$.
8. For all $(b^m)' \in W(b^m)$ there exists $x \in H$, $b^{m-1}(b^m)'xa \in H$.
9. There exist $x, y \in H$ such that $xa = by$.
10. There exist $x, y \in H$ such that $ax = yb$.
11. $HaH \cap HbH \neq \emptyset$.

Proof. Let $a, b \in S$ and $(a^n)' \in W(a^n)'$ where a^n be a-regular and $(b^m)' \in W(b^m)$ where b^m be b-regular.

(1) \Rightarrow (2) By Theorem 3.2, ρ is symmetric and so $ba^{n-1}(a^n)' \in H$.

(2) \Rightarrow (3) Suppose that $ba^{n-1}(a^n)' \in H$. Since H is a weakly self-conjugate, we have $b^{m-1}(b^m)'ba^{n-1}(a^n)'b \in H$. By Lemma 3.4(3), we have $H = \text{Ker}\rho \in \mathcal{C}$. Since H is full and $H = H_\omega$, we have $b^{m-1}(b^m)'b \in E(S) \subseteq H$, so $a^{-1}(a^n)'b \in H$.

(3) \Rightarrow (4) Since $(b^m)(b^m)' \in E(S) \subseteq H$ for all $(b^m)' \in W(b^m)$ where b^m is b-inversive, we have $a^{-1}(a^n)'b(b^{m-1})(b^m)'a = a^{-1}(a^n)'b^{m-1}(b^m)'a \in H$. Now $a^{-1}(a^n)'b \in H$ implies $b^{m-1}(b^m)'a \in H$. If $b^{m-1}(b^m)'a \in H$, we have $b(b^{m-1}(b^m)'a b^{m-1}(b^m))' \in H$, so $ab^{m-1}(b^m)' \in H$ which proves (1), (2), (3), (4) are equivalent.

(5) \Rightarrow (6) Suppose that $axb^{m-1}(b^m)' \in H$ for some $x \in H$. Since $x \in H$, we have $xb^{m-1}(b^m)'bx \in H$ and so $axb^{m-1}(b^m)'bxa^{-1}(a^n)' \in H$. Since $H = H_\omega$, we have $bxa^{-1}(a^n)' \in H$.

(6) \Rightarrow (7) If $bxa^{-1}(a^n)' \in H$ for some $x \in H$ then $bxa^{-1}(a^n)'xb \in H$. Since H is a weakly self-conjugate, $b^{m-1}(b^m)'bx a^{-1}(a^n)'xb \in H$. Since $H = H_\omega$, we have $a^{-1}(a^n)'xb \in H$.

(7) \Rightarrow (8) Suppose that $a^{-1}(a^n)'xb \in H$ for some $x \in H$. Since $b^{m-1}(b^m)'xa(a^{-1})(a^n)'xb \in H$ and $H = H_\omega$, we have $b^{m-1}(b^m)'xa \in H$.

(8) \Rightarrow (9) Suppose that $b^{m-1}(b^m)'xa \in H$ for some $x \in H$. Then $b^{m-1}(b^m)'xa = y$ where $y \in H$ and $b^{m}(b^m)'xa = by$. Put $b^{m}(b^m)'x = x_1$. Then $x_1a = by$ for some $x_1, y \in H$.

(9) \Rightarrow (10) Suppose that $xa = by$ for some $x, y \in H$ implies

$$a^n(a^n)'xab^{m-1}(b^m)'b = a^n(a^n)'byb^{m-1}(b^m)'b \quad \text{and}$$

$$a[a^{-1}(a^n)'xab^{m-1}(b^m)'b] = [a^n(a^n)'byb^{m-1}(b^m)]b.$$
y_1b for some \(x_1, y_1 \in H \).

(10) \Rightarrow (11) Suppose that \(ax = yb \) for some \(x, y \in H \). Then \(xaxy = xyby \in HaH \cap HbH \), so \(HaH \cap HbH \neq \emptyset \).

(11) \Rightarrow (5) Suppose that \(HaH \cap HbH \neq \emptyset \) implies \(h_1ah_2 = t_1bt_2 \) for some \(h_1, h_2, t_1, t_2 \in H \). Now \(h_1ah_2 = t_1bt_2 \) implies

\[
\begin{align*}
 a^n(a^n)'h_1ah_2b^{m-1}(b^m)'b &= a^n(a^n)'t_1bt_2b^{m-1}(b^m)'b \\
 a[a^{n-1}(a^n)'h_1ah_2b^{m-1}(b^m)']b &= [a^n(a^n)'t_1bt_2b^{m-1}(b^m)']b.
\end{align*}
\]

Hence \(ax = yb \) for some \(x, y \in H \), which implies \(axb^{m-1}(b^m)' = yb^{m}(b^m)' \in H \). Hence (5) and (11) are equivalent.

(1) \Rightarrow (9) If \(ab^{m-1}(b^m)' = y \in H \) then \(ab^{m-1}(b^m)'b = yb \), so \(ax = yb \) for some \(x, y \in H \).

(5) \Rightarrow (4) Now, \(axb^{m-1}(b^m)' \in H \) implies \(a^{n-1}(a^n)'axb^{m-1}(b^m)'a \in H \). So \(b^{m-1}(b^m)'a \in H \), which completes the proof. \(\square \)

References

Received: September, 2009