The Influence of Certain Permutable Subgroups on the Structure of Finite Groups

A. A. Heliel

Department of Mathematics, King Abdulaziz University
Faculty of Science 80203, Jeddah 21589, Saudi Arabia
heliel9@yahoo.com

S. M. Alharbia

Department of Mathematics, Umm Al-Qura University
Faculty of Science 8140, Makkah, Saudi Arabia

Abstract

A subgroup of a finite group G is said to be S-quasinormal in G if it permutes with every Sylow subgroup of G. A subgroup H of a finite group G is said to be s-semipermutable in G if it permutes with every Sylow p-subgroup of G, where p and the order of H are relatively prime. A subgroup H of a finite group G is said to be S-quasinormally embedded in G if every Sylow subgroup of H is a Sylow subgroup of some S-quasinormal subgroup of G. In this paper, we are interested in studying the structure of the finite group G under the assumption that certain subgroups of prime power order of G are s-semipermutable or S-quasinormally embedded in G. Some recent results are improved and generalized.

Mathematics Subject Classification: 20D10; 20D20

Keywords: s-semipermutable subgroups, S-quasinormally embedded subgroups, p-nilpotent groups, p-solvable groups, p-supersolvable groups, supersolvable groups, saturated formations

1This research has been supported by the Institute of Scientific Research at Umm Al-Qura University, Makkah, Saudi Arabia.

2Permanent address: Department of Mathematics, Beni-Suef University, Faculty of Science 62511, Beni-Suef, Egypt
1 Introduction

Throughout only finite groups are considered. We use the standard notions and notations given by Doerk and Hawkes in [1].

We say, following Kegel [2], that a subgroup of a group G is S-quasinormal in G if it permutes with every Sylow subgroup of G. As a generalization of S-quasinormality, in [3], Chen introduced the following concept: A subgroup H of a group G is said to be s-semipermutable in G if it permutes with every Sylow p-subgroup of G with $(p, |H|) = 1$. Clearly, every S-quasinormal subgroup is s-semipermutable. The converse is not true in general and this can be easily seen by considering the alternating group of degree 4. Also, in [4], Ballester-Bolinches and Pedraza-Aguilera generalized the S-quasinormality as follows: A subgroup H of a finite group G is said to be S-quasinormally embedded in G if every Sylow subgroup of H is a Sylow subgroup of some S-quasinormal subgroup of G. It is easy for the reader to see that S-quasinormal subgroups are S-quasinormally embedded. The converse is not true in general; the symmetric group of degree 3 is a counterexample.

It seems that knowing some information about certain subgroups of prime power order of the group G often helps us to understand the structure of G. For example, Buckley [5] proved that a group of odd order is supersolvable if all its minimal subgroups are normal (a subgroup of prime order is called a minimal subgroup). Srinivasan [6] proved that if the maximal subgroups of the Sylow subgroups of G are normal in G, then G is supersolvable. These important results on supersolvable groups have been generalized by many authors. One direction of the generalization is to replace the normality condition of minimal subgroups or maximal subgroups by a weaker condition; and the other direction is to minimize the number of minimal or maximal subgroups of Sylow subgroups of a finite group. For example, Shaalan [7] proved that if G is a group and the cyclic subgroups of prime order or order 4 of G are S-quasinormal in G, then G is supersolvable. In [4], the authors studied and analyzed the influence of S-quasinormal embedded subgroups in the supersolvability of finite groups. Working within the framework of formation theory, Asaad and Heliel [8] generalized all the results in [4] (the reader is referred to [1] for notation and basic results in the theory of formation). For more results by using S-quasinormally embedded condition; see for instance [9] and [10]. In [11], L. Wang and Y. Wang studied the structure of the finite group G under the assumption that the maximal and the minimal subgroups of the Sylow p-subgroups of G are s-semipermutable. For more results by using s-semipermutable condition; see for instance [12], [13], [14] and [15].
The main object of this paper is to continue these investigations and determine the structure of the finite group G under the assumption that certain subgroups of prime power order are s-semipermutable or S-quasinormally embedded in G.

2 Preliminaries

In this section, we collect some of the results that will be used later.

Lemma 2.1[3]. Let G be a group:

(i) If H is s-semipermutable subgroup in G and K is a subgroup of G such that $H \leq K \leq G$, then H is s-semipermutable in K.

(ii) Let π be a set of primes, N is a normal π-subgroup of G and H is π-subgroup of G. If H is s-semipermutable in G, then HN/N is s-semipermutable in G/N.

Lemma 2.2[15]. Let G be a group and H be a subgroup of G contained in $O_p(G)$. Then H is S-quasinormal in G if and only if H is s-semipermutable in G.

If P is a finite p-group, we denote

$$\Omega(P) = \Omega_1(P) \text{ if } p > 2 \quad \text{and} \quad \Omega(P) = \langle \Omega_1(P), \Omega_2(P) \rangle \text{ if } p = 2,$$

where

$$\Omega_i(P) = \langle x \in P : O(x) = p^i \rangle.$$

Lemma 2.3[16]. Let P be a Sylow 2-subgroup of the finite group G. If P is quaternion-free and $\Omega_1(P) \leq Z(G)$, then G is 2-nilpotent.

Lemma 2.4[15]. Let G be a group and let K be a normal subgroup of G such that G/K is supersolvable. If all subgroups of K of prime order or order 4 are s-semipermutable in G, then G is supersolvable.

Lemma 2.5[8]. Let G be a group with a normal subgroup H such that the maximal subgroups of the Sylow subgroups of H are S-quasinormally embedded in G. Then for any nontrivial normal subgroup N of G, the maximal subgroups of the Sylow subgroups of HN/N are S-quasinormally embedded in G/N.

Lemma 2.6[8]. If H is a core-free S-quasinormal subgroup of a group G and P is a Sylow p-subgroup of H, for some prime p, then P is S-quasinormal in G.

Lemma 2.7[8]. Let P be an elementary abelian p-subgroup of a group G such that P is not cyclic. Equivalent are:
(i) The subgroups of order p in P are normal in G.

(ii) The maximal subgroups of P are normal in G.

Lemma 2.8[4]. Let G be a group. If U is S-quasinormally embedded subgroup in G and H is a subgroup of G such that $U \leq H \leq G$, then U is S-quasinormally embedded in H.

Lemma 2.9[8]. Let G be a group and let p be the smallest prime dividing the order of G. If the maximal subgroups of the Sylow p-subgroups of G are S-quasinormally embedded in G, then G is p-nilpotent.

For the saturated formation \mathfrak{F}, the \mathfrak{F}-hypercenter of a group G will be denoted by $Z_{\mathfrak{F}}(G)$.

Lemma 2.10[17]. Let H be a normal subgroup of a group G such that $G/H \in \mathfrak{F}$, where \mathfrak{F} is a saturated formation. If $\Omega(P) \leq Z_{\mathfrak{F}}(G)$, where P is a Sylow p-subgroup of H, then $G/O_p(H) \in \mathfrak{F}$.

3 Main Results

The following result is a slight improvement of Theorem 3.2 in [15]:

Theorem 3.1. Let G be a group and let H be a normal subgroup of G such that G/H is p-nilpotent, where p is a prime divisor of $|G|$ with $(|G|, p-1)=1$. If there exists a Sylow p-subgroup P of H such that every cyclic subgroup of order p or 4 (if $p=2$) is s-semipermutable in G, then G is p-nilpotent.

Proof. Let G be a counterexample of minimal order and let M be a proper subgroup of G. Then $M/(M \cap H) \cong MH/H \leq G/H$, hence $M/(M \cap H)$ is p-nilpotent. Clearly, $M \cap H$ is a Sylow p-subgroup of $M \cap H$ and every cyclic subgroup of $M \cap H$ with order p or 4 (if $p=2$) is s-semipermutable in M by hypothesis and Lemma 2.1. Our choice of G implies that M is p-nilpotent. Thus G is a minimal non p-nilpotent group (that is G is not p-nilpotent and all its proper subgroups are p-nilpotent). By a result of Itô [18; IV, Satz 5.4], G has a normal Sylow p-subgroup G_p and a cyclic Sylow q-subgroup G_q such that $G = G_p \rtimes G_q$. Moreover, G_p is of exponent p if $p > 2$ and of exponent at most 4 if $p = 2$. Since G/H is p-nilpotent, $HG_q < G$. If $HG_q < G$, then HG_q is nilpotent and so $G_q < HG_q$. Since G_q char HG_q and $HG_q < G$, it follows easily that $G_q < G$; a contradiction. Hence $HG_q = G$ and $P = G_p$. Now let x be an element of $P = G_p$ with order p or 4 (if $p = 2$). By hypothesis, $<x>$ is s-semipermutable in G. Since $P = G_p = O_p(G)$, it follows, by Lemma 2.2, that $<x>$ is S-quasinormal in G. Hence, $<x>G_q$ is a subgroup of G. However, $<x> = P \cap <x>G_q < <x>G_q$, hence $<x>G_q = <x> \times G_q$. Since $P = \Omega_1(P)$ if P
is of exponent p and $P = \Omega_2(P)$ if p is of exponent 4, it follows that $G = P \times G_q$; a contradiction. This completes the proof of the theorem.

Immediate consequence of Theorem 3.1, we have:

Corollary 3.2. Let p be the smallest prime dividing the order of the group G and let P be a Sylow p-subgroup of G. If all subgroups of P of order p or order 4 are s-semipermutable in G, then G is p-nilpotent.

For a group G, we define $D(G) = \cap\{H : H \triangleleft G$ and G/H is nilpotent$\}$ and call it the nilpotent residual of G.

Now we can prove:

Theorem 3.3. Let p be the smallest prime dividing the order of the group G and let P be a Sylow p-subgroup of G. If P is quaternion-free and all minimal subgroups of $D(G) \cap P$ of order p or order 4 are s-semipermutable in G, then G is p-nilpotent.

Proof. Suppose that the result is false and let G be a counterexample of minimal order. Then G is not p-nilpotent and so G contains a minimal non-p-nilpotent subgroup, K, say. By [18; IV, Satz 5.4], K is a minimal nonnilpotent subgroup of G. By [18; IV, Satz 5.2], $|K| = p^nq^m$ for a prime $q \neq p$, K has a normal Sylow p-subgroup K_p of exponent p when $p > 2$ or at most 4 if $p = 2$ and a non-normal cyclic Sylow q-subgroup K_q. Without loss of generality, we can assume that $K_p \leq P$. Clearly, $D(K) = K_p$. Then $D(K) \cap K_p = K_p$. By hypothesis, all minimal subgroups of K_p are s-semipermutable in G. Then, by Lemma 2.1, all minimal subgroups of K_p are s-semipermutable in K. In fact if the exponent of K_p is p, then, by Corollary 3.2, K is p-nilpotent; a contradiction. Thus, the exponent of P is 4 and hence $p = 2$. So, by [18; III, Satz 5.2], $K_2' = Z(K_2) = \Phi(K_2)$, K_2' is elementary abelian and K_2/K_2' is a chief factor of K. Then $\Omega_1(K_2) = K_2' \leq Z(K_2)$. Now, by applying Lemma 2.3, we conclude that K is 2-nilpotent; a final contradiction.

The following example shows that the hypothesis “P is quaternion-free” is necessary in Theorem 3.3:

Example 3.4. Set $G = SL(2, 3)$. Then the Sylow 2-subgroup P of G is the quaternion group of order 8 and $D(G) = P$. Thus all minimal subgroups of $D(G) \cap P$ are normal (s-semipermutable) in G. However G is not 2-nilpotent.

Immediate consequence of Theorem 3.3, we have:

Corollary 3.5. Let p be the smallest prime dividing the order of G and let P be a Sylow p-subgroup of G. If all subgroups of $D(G) \cap P$ of order p or order 4 are s-semipermutable in G, then G is p-nilpotent.

Now we prove:
Theorem 3.6. If all minimal subgroups of \(D(G) \cap P \) are s-semipermutable in \(G \) for all Sylow subgroups \(P \) of \(G \), then \(G \) is supersolvable or \(G \) has a section isomorphic to the quaternion group of order 8.

Proof. If \(G \) has a section isomorphic to the quaternion group of order 8, then we are done. Thus we can assume that \(G \) has no section isomorphic to the quaternion group of order 8. Theorem 3.3 implies that \(G \) is \(r \)-nilpotent, where \(r \) is the smallest prime dividing the order of \(G \). Then \(G = RK \), where \(R \) is a Sylow \(r \)-subgroup of \(G \) and \(K \) is a normal Hall \(r \)-subgroup of \(G \). Clearly, \(D(K) \leq D(G) \). Since all minimal subgroups of \(D(K) \cap P \) are s-semipermutable in \(G \) by hypothesis, we have that all minimal subgroups of \(D(K) \cap P \) are s-semipermutable in \(K \) for all Sylow subgroups \(P \) of \(K \) by hypothesis. By induction on the order of \(G \), \(K \) is supersolvable. Hence \(Q \) is a normal Sylow \(q \)-subgroup of \(K \), where \(q \) is the largest prime dividing the order of \(K \). Since \(Q \) char \(K \triangleleft G \), we have that \(Q \triangleleft G \). Put \(D(G/Q) = L/Q \). Since \((G/Q)/(L/Q) \cong G/L \) is nilpotent, we have that \(D(G) \leq L \) and since \((G/Q)/(D(G)Q/Q) \cong G/(D(G))/(D(G)Q/Q) \) is nilpotent, we have that \(L \leq D(G)Q \). Hence \(L = D(G)Q \) and so \(D(G/Q) = D(G)Q/Q \). Clearly, \(D(G/Q) \cap (PQ/Q) = (D(G) \cap P)Q/Q \) for all Sylow subgroups \(PQ/Q \) of \(G/Q \). By hypothesis and Lemma 2.1, all minimal subgroups of \(D(G/Q) \cap (PQ/Q) \) are s-semipermutable in \(G/Q \) for all Sylow subgroups \(PQ/Q \) of \(G/Q \). By induction on the order of \(G \), \(G/Q \) is supersolvable. Since \(G/D(G) \) is nilpotent, we have that \(G/(D(G) \cap Q) \) is supersolvable. Applying Lemma 2.4, \(G \) is supersolvable. This completes the proof of the theorem.

The arguments which established Theorem 3.6 can be easily adapted to yield the following corollaries:

Corollary 3.7. If all subgroups of \(D(G) \cap P \) of prime order or order 4 are s-semipermutable in \(G \) for all Sylow subgroups \(P \) of \(G \), then \(G \) is supersolvable.

Corollary 3.8[7]. If all subgroups of \(P \) of prime order or order 4 are S-quasinormal in \(G \) for all Sylow subgroups \(P \) of \(G \), then \(G \) is supersolvable.

Corollary 3.9[5]. Assume that \(G \) is a group of odd order and every subgroup of \(G \) of prime order is normal in \(G \), then \(G \) is supersolvable.

Let \(p \) be a prime number. \(\mathcal{U}_p \) will denote to the class of all groups \(G \) such that every \(p \)-chief factor of \(G \) is cyclic (\(G \) is \(p \)-supersolvable), and \(\mathcal{U} \) will denote to the class of all supersolvable groups. Clearly, \(\mathcal{U}_p \) and \(\mathcal{U} \) are saturated formations. In the following, by using the concept of \(S \)-quasinormally embedded, we study the behaviour of \(\mathcal{U}_p \) as a class of \(p \)-supersolvable groups and apply the result to get information about the structure of the group through the theory of formation.
Theorem 3.10. Let p be a prime, G be a p-solvable group and let H be a normal subgroup of G such that $G/H \in \mathcal{U}_p$. If the maximal subgroups of the Sylow p-subgroups of H are S-quasinormally embedded in G, then $G \in \mathcal{U}_p$.

Proof. Assume that the result is false and let G be a counterexample of minimal order. By Lemma 2.5, we observe that the hypotheses of the Theorem are inherited by quotient groups. Since \mathcal{U}_p is a saturated formation, the minimal choice of G implies that G is a monolithic primitive group such that $G/N \in \mathcal{U}_p$ and $\Phi(G) = 1$, where N is the unique minimal normal subgroup of G.

Clearly, we may and shall assume that $N \leq H$. Since G is p-solvable, it follows that either N is a p-group or p-group. In the second case we have that $G \in \mathcal{U}_p$; a contradiction. Thus N is a p-group (in particular elementary abelian p-group and p^2 divides N). Let M be a complement of N in G and let H_p be a Sylow p-subgroup of H. Then $H_p \cap M$ is a complement to N in H_p. Pick a maximal subgroup P_1 of H_p containing $H_p \cap M$. By hypotheses, P_1 is S-quasinormally embedded in G. Then there exists a subgroup K which is S-quasinormal in G and P_1 is a Sylow p-subgroup of K. If $N \leq K$, then $H_p = K(H_p \cap M) = K$ and this leads to $H_p = P_1$; a contradiction. Thus $N \not\leq K$. Therefore K is core-free in G. By Lemma 2.6, P_1 is S-quasinormal in G and this means that the Fitting subgroup $F(G)$ is nontrivial. Therefore $N \leq F(G)$ and since G is a monolithic primitive group, it follows that $C_{G}(N) = N$. Also, $\Phi(F(G)) \leq \Phi(G) = 1$, so $F(G)$ is abelian. Hence $P_1 \leq F(G) = N$ and we have that $H_p = N$.

Let P be any maximal subgroup of $H_p = N$. Using the hypotheses and the same argument above, it is easy to see that P is S-quasinormal in G. Let G_q be any Sylow q-subgroup of G such that $(|G_q|, |N|) = 1$ and consider the subgroup NG_q. Since P is S-quasinormal in G, it follows that P is S-quasinormal in NG_q and so $P \lhd NG_q$. Since N is elementary abelian, it follows that the subgroups of order p in N are normal in NG_q by Lemma 2.7. Since N is normal in G, it follows that $N \cap Z(G_p) \neq 1$. Pick a subgroup L of $N \cap Z(G_p)$ of order p. Then L is normal in G_p and, since L is normal in NG_q for any Sylow subgroup G_q of G with $(|G_q|, p) = 1$, it follows that L is normal in G. Then $L = N$ as N is a minimal normal subgroup of G. Thus N is a self-centralizing cyclic minimal normal subgroup of G and this implies that $G \in \mathcal{U}_p$; a final contradiction, completing the proof of the theorem.

The following example shows that Theorem 3.10 is not true if we omit the p-solvability of G.

Example 3.11. Consider $G = S_5$, the symmetric group of degree five, and $H = A_5$, the alternating group of degree five. Clearly, G/H is 5-supersolvable and 1 is the maximal subgroup of any Sylow 5-subgroup of H and it is certainly
normal (S-quasinormally embedded) in G. But G does not 5-supersolvable.

Remark 3.12. A π-solvable group is π-supersolvable if its π-chief factors are all cyclic, i.e. if it is p-supersolvable for all primes $p \in \pi$. Clearly, results for π-supersolvability can be obtained just by taking the intersection of the corresponding results for π-supersolvability for all primes $p \in \pi$. One might ask whether Theorem 3.10 can be generalized by changing p by π to obtain a similar theorem to it in π-supersolvability, where π is a set of prime numbers with $|\pi| > 1$. The answer is negative by the following example:

Example 3.13. Take $\pi = \{2, 3\}$ and consider the solvable group $G = S_4$, the symmetric group of degree 4, and $H = A_4$, the alternating group of degree 4. Obviously, G/H is π-supersolvable and the maximal subgroups of the Hall π-subgroups of $H = O_\pi(H)$ are the Sylow subgroups of H and they are S-quasinormally embedded in G. But G is not π-supersolvable.

Immediate consequence of Theorem 3.10, we have:

Corollary 3.14. Let p be a prime, G be a p-solvable group and let H be a normal subgroup of G such that $G/H \in \mathcal{U}_p$. If the maximal subgroups of the Sylow p-subgroups of H are S-quasinormal in G, then $G \in \mathcal{U}_p$.

Theorem 3.10 allows us to give new and short proof of Theorem 3.3 in [8] as follows:

Theorem 3.15. Let \mathcal{F} be a saturated formation containing \mathcal{U} and let G be a group. Then $G \in \mathcal{F}$ iff there is a normal subgroup H in G such that $G/H \in \mathcal{F}$ and the maximal subgroups of the Sylow subgroups of H are S-quasinormally embedded in G.

Proof. We need only to prove the “if” part. By Lemma 2.8, we have that the maximal subgroups of the Sylow subgroups of H are S-quasinormally embedded in H. Repeated application of Lemma 2.9 implies that H has a Sylow tower of supersolvable type. Let p be the largest prime dividing the order of H and let H_p be a Sylow p-subgroup of H. It is clear that $H_p \trianglelefteq G$. Let N be a minimal normal subgroup of G. If we assume that $G \notin \mathcal{F}$ and consider a counterexample of minimal order G, we can argue as in the proof of Theorem 3.10 to conclude that $G/N \in \mathcal{F}$ and N is cyclic of order p. Then $N \leq Z_u(G)$ and, since $\mathcal{U} \subseteq \mathcal{F}$, it follows that $Z_u(G) \subseteq Z_\pi(G)$, so $N \leq Z_\pi(G)$. Hence $G \in \mathcal{F}$ by Lemma 2.10; a contradiction.

References

Received: July, 2010