On v-Hereditary Rings

Chahrazade Bakkari

Department of Mathematics, Faculty of Science and Technology of Fez
Box 2202, University S. M. Ben Abdellah Fez, Morocco
cbakkari@hotmail.com

Abstract

In this paper, we introduce the notion of ”v-hereditary rings” which is a generalization of the notion of hereditary rings. Then we establish the transfer of this notion to trivial ring extensions and direct products and provide a class of v-hereditary rings which are not hereditary rings.

Mathematics Subject Classification: 16S50

Keywords: v-hereditary rings, hereditary rings, trivial ring extensions, direct products

1 Introduction

All rings considered below are commutative with unit and all modules are unital. Let R be a commutative ring and let $Tot(R)$ denote the total ring of quotients of R. A ring R is called a total ring of quotients if $R = Tot(R)$, that is every element of R is invertible or zero-divisor. Let I and J be two nonzero ideals of R. We define the fractional ideal $(I : J) = \{ x \in Tot(R)/xJ \subset I \}$. We denote $(R : I)$ by I^{-1}. An ideal I is said to be v-projectif if $I^{-1} = J^{-1}$ for some projectif ideal J of A.

Recall that a ring R is called hereditary if every ideal I of R is projectif. We introduce a new concept of a “v-hereditary” ring. A ring R is called v-hereditary if every ideal of R is v-projectif. An hereditary ring is naturally a v-hereditary ring.

Let A be a ring and E an A-module. The trivial ring extension of A by E is the ring $R := A \times E$ whose underlying group is $A \times E$ with multiplication given by $(a, e)(a', e') = (aa', ae' + a'e)$. Considerable work, part of it summarized in Glaz’s book [2] and Huckaba’s book (where R is called the idealization of E in A) [4], has been concerned with trivial ring extensions. See for instance
Our aim in this paper is to prove that v-hereditary rings are not hereditary rings, in general. Further, we investigate the possible transfer of the v-hereditary property to various trivial extension constructions and to direct products.

2 Main Results

The goal of this paper is to provide a classe of non-hereditary v-hereditary rings. But first, we give a wide class of v-hereditary rings.

Theorem 2.1 Any total ring of quotients is v-hereditary.

Proof. Let \(R \) be a total ring. Our aim is to show that every ideal of \(R \) is v-projectif.

Let \(I \) be an ideal of \(R \). Then, \(I^{-1} = \{ x \in R/xI \subseteq R \} = R \) since \(R \) is a total ring. Hence, \(I^{-1} = R^{-1} \) and so \(I \) is v-projectif, as desired.

Examples of non-hereditary v-hereditary rings may stem from Theorem 2.1 as shown by the following two constructions.

Example 2.2 Let \((A, M)\) be a local ring and \(E\) an \(A\)-module with \(ME = 0\). Let \(R := A \times E\) be the trivial ring extension of \(A\) by \(E\). Then:

1) \(R\) is a v-hereditary ring.

2) \(R\) is not an hereditary ring.

Proof. 1) By Theorem 2.1, it suffices to show that \(R\) is a total ring of quotients. Let \((a, e)\) be an element of \(R\). Two cases are then possibles:

If \(a \in A - M\) (that is \(a\) is invertible in \(A\)), then \((a, e)\) is invertible in \(R\) by [4, Theorem 25.1].

Now, assume that \(a \in M\). Then \((a, e)(0, f) = (0, 0)\) for all \(f \in E\) and so \((a, e)\) is a zero-divisor, as desired.

2) We claim that \(R\) is not hereditary. Deny. The ideal \(J := R(0, e)\) is projectif, where \(e(\neq 0) \in E\) and so \(J\) is free since \(R\) is local (by [4, Theorem 25.1] as \(A\) is local). A contradiction since \(J(0, f) = (0, 0)\) for all \(f \in E\). Hence, \(R\) is not hereditary, as desired.
Example 2.3 Let Z be the ring of integers, $A := Z_2 \times Z$ be a countable direct sum of copies of $A/2A$ with addition and multiplication defined component wise, where Z is the ring of integers. Let $R = A \times E$ with multiplication defined by $(a,e)(b,f) = (ab, af + be + ef)$. Then:
1) R is a v-hereditary ring.
2) R is not an hereditary ring.

Proof. 1) By Theorem 2.1, it suffices to show that R is a total ring of quotients. Remark that R has $(1, 0)$ as unit element. Let (a,e) be an element of R. Without loss of generality, we may assume that $a = 1$ or $a \in 2Z$. Two cases are then possible:
Case 1: $a = 1$. Two cases are then possible:
If $e = 0$, then $(a,e)(0, 0) = (0, e + e) = (0, 2e) = (0, 0)$ since we have the four basic facts: E is Boolean; $2E = 0$; $ae = e$ for any $a \in Z - 2Z$ and $e \in E$; and for any $e \neq 0 \in E$, there exists $f \neq 0 \in E$ such that $ef = 0$. Hence, $(1, e)$ is a zero-divisor element.
Case 2: $a \in 2Z$.
Let $f \in E$ such that $ef = 0$. Then $(a,e)(0, f) = (0, af + ef) = (0, 0)$ since $af = 0$ (as $a \in 2Z$) and $ef = 0$. Hence, (a,e) is a zero-divisor element and this completes the proof of Example 2.3.

Next, we study the transfer of the v-hereditary property to direct products.

Proposition 2.4 Let $(R_i)_{i=1,\ldots,n}$ be a family of rings. Then, $\prod_{i=1}^{n} R_i$ is v-hereditary if and only if R_i is v-hereditary for each $i = 1, \ldots, n$.

Proof. By induction on n, it suffices to prove the assertion for $n = 2$. It is clear to show that for any ideal $I_1 \prod I_2$ of $R_1 \prod R_2$, $(I_1 \prod I_2)^{-1} = (I_1)^{-1} \prod (I_2)^{-1}$.
Then, the conclusion follows easily from [5, Lemma 2.5] and this completes the proof of Proposition 2.4.

Now, we are able to construct non-local non-hereditary v-hereditary rings.

Example 2.5 Let R_1, R_2 be non-hereditary v-hereditary rings (see for instance Examples 2.2 and 2.3) and set $R = R_1 \prod R_2$. Then:
1) R is a v-hereditary ring by Proposition 2.4.
2) It is clear that R is non-local non-hereditary ring.

Finally, we construct non v-hereditary rings.
Example 2.6 Let D be a local domain, $K := qf(D)$, E be a K-vector space, and $R := D \times E$. Then R is never an hereditary ring.

Proof. Observe that $(a, e) \in R$ is regular if and only if $a \neq 0$ (which means that $R - Z(R) = \{(a, e) \in R \mid a \neq 0\}$), then $T(R) = K \times E$.

Let E' be a D-submodule of E and set $J := 0 \times E'$ which is an ideal of R. To complete the proof, it suffices to show that there exists no projective ideal H of R such that $J^{-1} = H^{-1}$.

Let H be an ideal of R and set $I := \{a \in D/(a, e) \in H \text{ for some } e \in E\}$. Two cases are then possibles:

Case 1. $I = 0$. Then $H^{-1} = \{(a, e) \in T(R) = K \times E/(a, e)H \subseteq R\} = T(R)$ since $I = 0$. On the other hand, we claim that H is not projective. Deny. Then H is free since R is local (by [4, Theorem 25.1] and since D is local) and since H is projective, a contradiction as $H(0, e) = 0$ for each $e \in E$. Hence, H is not projective and $H^{-1} = T(R)$.

In particular, J is not projective and $J^{-1} = T(R)$.

Case 2. $I \neq 0$. By [4, Theorem 25.10], we have $H^{-1} = I^{-1} \times E \neq K \times E = T(R)$ since $I^{-1} \neq K$.

Hence, the ideals H of R such that $H^{-1} = J^{-1}(= T(R))$ have the form $H = 0 \times E''$, where E'' is a D-submodule of E, which is not projective. Therefore, R is not v-hereditary, as desired.

References

Received: July, 2010