p.q. Baer Ring with Generalized Countable Join

Prachi Juyal, M. R. Khan and V. N. Dixit

Department of Mathematics
Jamia Millia Islamia (Central University)
New Delhi 110 025, India
prachijuyal@yahoo.com
rais.mt@jmi.ac.in
vn_dixit@yahoo.com

Abstract

Let R be a ring with unity. Let α be an endomorphism of R and R_R be an α-compatible module. Then the formal power series ring $R[[x, \alpha]]$ is right p.q. Baer iff R is right p.q. Baer and every countable subset of right semicentral idempotents has a generalized countable join.

Mathematics Subject Classification: 16D80, 16S36, 16W60

Keywords: p.q. Baer ring, generalized countable join, generalized join, α-compatible module

1 Introduction

Throughout this paper, R denotes an associated ring with unity and M_R will stand for right R-module. Recall that R is called (quasi) Baer ring if the right annihilator of every (right ideal) non empty subset of R is generated as right ideal by an idempotent of R. In [16] Kaplansky introduced Baer rings to abstracts various properties of AW^*-algebra and von Neumman algebras. The class of Baer rings includes the von Neumman algebras. Quasi-Baer rings introduced by Clark [8], are used to characterize when a finite dimensional Algebra over a algebraically closed field is isomorphic to a twisted matrix units semi-group algebra. The definition of quasi Baer ring is left-right i.e. a ring R is left (quasi) Baer ring iff R is right (quasi) Baer ring.

As a generalization of quasi-Baer ring, G.F. Birkenmeier, J.Y. Kim, J.K. Park in [3] introduced the concept of principally quasi-Baer rings. A ring R is called right principally quasi-Baer (or right p.q. Baer) if the right annihilator of principal right ideal of R generated by an idempotent similarly left p.q. Baer rings can be defined. A ring R, is p.q. Baer if it is right and left p.q. Baer
ring. The class of p.q. Baer ring includes all q. Baer ring, abelian p.p.-ring and bi-regular ring. For more details and examples of right p.q. Baer ring see [3].

Recently many authors studied the ore extension of quasi-Baer ring and their generalization in [3-6]. It has been proved in [4] that the ring R is quasi-Baer iff $R[x]$ is quasi-Baer if and only if $R[[x]]$ is quasi-Baer where X is an arbitrary non-empty set of not-necessarily commuting indeterminates. If R is reduced (i.e. R has no non-zero nilpotent elements). Then R is Baer iff $R[x]$ is Baer iff $R[[x]]$ is Baer [4]. Recall [4], that an idempotent $e \in R$ is left semicentral in R if $eRe = eR$ for all $r \in R$. Equivalently $e^2 = e \in R$ is left semicentral if eR is an ideal of R. Since the right annihilator of right ideal is an ideal. We see that in p.q. Baer ring the right annihilator of principal right ideal is generated by left semicentral idempotent. A ring R is right p.q. Baer iff $R[[x]]$ is right p.q. Baer. But it is not equivalent to that $R[[x]]$ is p.q. Baer. In [17], Z. Liu showed that R is p.q. Baer iff $R[[x]]$ is p.q. Baer and any countable family of idempotent has generalized join when all the left semicentral idempotent are central. In [9] Y. Cheng and F.K. Huang, have shown that the ring $R[[R]]$ is right p.q. Baer iff R is right p.q. Baer and every countable subset of right semicentral idempotents has generalized countable join.

From now onwards we always denote the skew power series ring $T = R[[x, \alpha]]$, where $\alpha : R \rightarrow R$ is an endomorphism. The ring T consisting all the power series of form $\sum_{i=0}^{\infty} a_i x_i^i$ where $a_i \in R$, which are multiplied using the distributive law and the ore commutation rule $xa = \alpha(a)x$ for all $a \in R$. In [1] a module M_R, an endomorphism $\alpha : R \rightarrow R$ we say that M_R is α-compatible if for each $m \in M$, $r \in R$ we have $mr = 0 \iff ma(r) = 0$. In [13] Ebrahim Hashemi showed that let R be a ring with $S_l(R) \subseteq C(R)$ and α be an endomorphism of R. Let R_R be an α-compatible module. Then $R[[x, \alpha]]$ is right p.q. Baer iff R is right p.q. Baer and any countable family of idempotents of R has generalized join in $I(R)$. In this note we have removed the condition $S_r(R) \subseteq C(R)$ and shown that let R be a ring and α be an endomorphism of R and let R_R be an α-compatible module then $R[[x, \alpha]]$ is right p.q. Baer iff R is right p.q. Baer and every countable subset of semicentral idempotent has a generalized countable join.

2 Main Results

Generalized Join 2.1 In [17], Liu defined that the countable family of idempotents $\{e_0, e_1, \ldots\}$ of R is said to have a generalized join e if there exists $e^2 = e \in R$ such that.

(i) $e_i R(1 - e) = 0$

(ii) If d is an idempotent and $e_i R(1 - d) = 0$ then $e R(1 - d) = 0$
Generalized Countable Join 2.2 Let R be a ring with unity and $E = \{e_0, e_1, \ldots \}$ be a countable subset of $S_r(R)$. We say E has a generalized countable join if, given $a \in R$, there exists $e \in S_r(R)$ such that

(i) $e_i e = e_i$ for all $i \in N$

(ii) if $e_i a = e_i$ for all $i \in N$, then $ea = e$.

Lemma 2.3 ([3, Lemma 1.1]) For an idempotent $e \in R$, the following conditions are equivalent

(1) $e \in S_I(R)$
(2) $(1 - e) \in S_r(R)$
(3) $(1 - e)Re = 0$
(4) $R(1 - e)$ is an ideal of R

Lemma 2.4 Let R be a ring and if any countable set of idempotent $\{e_0, e_1, e_2, \ldots \} \subseteq S_r(R)$ has generalized countable join then generalize join.

Proof Suppose $E = \{e_0, e_1 \ldots \} \subseteq S_r(R)$ and e is an idempotent which is generalized countable join pf E. By hypothesis $e_i e = e_i$ for all $i \in N \Rightarrow e_i (1 - e) = 0$.

Take

\[
e_i R(1 - e) = e_i Re_i (1 - e) \quad \text{for } e_i \in S_r(R)\]

\[
e_i (1 - e) = 0\]

Now only prove condition (ii) Let d be an idempotent of R such that $e_i R(1 - d) = 0$. Then in particular $e_i (1 - d) = 0 \Rightarrow e_i d = e_i$ then by hypothesis $e.d = e \Rightarrow e(1 - d) = 0 \Rightarrow er (1 - d) = ese (1d) = 0$ for all $r \in R \Rightarrow eR(1 - d) = 0$. Therefore e is a generalized join in E.

Remark A right ideal I of a ring of R is said to have the intersection of factors property (Simply, IFP) if $ab \in I$ implies $aRb \subseteq I$ for $a, b \in R$. So a ring R is called IFP if and only if any right annihilator is an ideal if and only if any left annihilator is an ideal iff $ab = 0 \Rightarrow aRb = 0$ for $a, b \in R$. Simple computation gives that the reduced rings are IFP and IFP rings are abelian.

Lemma 2.5 Let R is p.q. Baer ring with IFP condition and if any set of idempotents $\{e_0, e_1, e_2, e_3, \ldots \} \subseteq S_r(R)$ has generalized join e. Then it is generalized countable join e.
Proof Let $E = \{e_0, e_1, \ldots \} \subseteq S_r(R)$ and e be a generalized join in E then $e_i R(1 - e) = 0 \Rightarrow e_r(1 - e) = 0$ for all $r \in R$ in particular $e_i(1 - e) = 0 \Rightarrow e_i e = e_i$. Now only to show that if $e_i a = e_i$ for $a \in R \Rightarrow e a = e$. Suppose d be an idempotent on R such that

$$e_i d = e_i$$

$$\Rightarrow e_i (1 - d) = 0$$

But $e_i R(1 - d) = 0 \Rightarrow e R(1 - d) = 0$ (by hypothesis)

In particular

$$e (1 - d) = 0$$

$$\Rightarrow e d = e.$$

Again suppose arbitrary $a \in R$ and R is p.q. Baer ring with IFP property then [3, Prop. 1.14] R is Reduced p.p.-ring. Then $(1 - a) = dt$, for some central idempotent $d \in R$ and for some $t \in R$. $r.ann(dt) = r.ann(t) = 0 = l.ann(dt) = l.ann(t)$, by [10, Proposition 2]. But $e_i a = e_i$

$$\Rightarrow e_i (1 - a) = 0$$

$$\Rightarrow e_i dt = 0$$

$$\Rightarrow e dt = 0 \quad \forall \ i \in \mathbb{N}, \ 0, 1, 2, 3, \ldots$$

$$\Rightarrow ed = 0$$

Take

$$e (1 - a) = edt = 0$$

$$\Rightarrow e (1 - a) = 0$$

$$\Rightarrow e a = e$$

Proposition 2.6 Let a ring R has IFP property. Then the following are equivalent

(i) R is right p.q. Baer, $S_r(R) \subseteq C(R)$ and any countable family of idempotents in R has a generalized join.

(ii) R is right p.q. Baer, $S_r(R) \subseteq C(R)$ and the right annihilator of any countably generalized right ideal of R is generated by an idempotent.

(iii) R is right p.q. Baer and any countable subset $S_r(R)$ has generalized countable join.

Proof (i) \Leftrightarrow (ii) [13, Lemma 2.10]

(ii) \Rightarrow (iii) Suppose that $E = \{e_i | i = 1, 2, \ldots \}$ be countable subset of $S_r(R)$. Suppose that I be right ideal countably generated by idempotents $\{e_i | i =
1, 2, . . . }. Then $\text{ann}_R(I) = eR$ for some $e \in S_r(R)$. Let $h = 1 - e$, then $e_i R(1 - h) = 0$
\[\Rightarrow e_i R(1 - h) = 0 \text{ for all } i \in R\]
\[\Rightarrow e_r R(1 - h) = 0 \text{ for all } r \in R\]
\[\Rightarrow e_i (1 - h) = 0 \Rightarrow e_i h = e_i\]

Now only to show condition (ii) i.e $e_i a = e_i \Rightarrow e a = e$ for $a \in R$ since (2) \Rightarrow (1) i.e. h is generalized join. But R is p.q. Baer and satisfies IFP property then by [Lemma 2] h is generalized countable join.

(iii) \Rightarrow (ii) Let $X = \{a_i | i = 1, 2, \ldots\}$ be countable subset of R and I be a right ideal of R generated by X. Then for each $a_i \in X$, $r.\text{ann}(a_i R) = e_i R$ for some idempotent $e_i \in S_r(R)$. Let h be generalized countable join of the set \[\{1 - e_i | i = 1, 2, \ldots\} \subseteq S_i(R)\] then by [Lemma 1] h is generalized join of the set \[\{1 - e_i | i = 1, 2, \ldots\}\]. Therefore by [13. Lemma 2.10] $r.\text{ann}_R(\langle X \rangle)$ is generated by an idempotent.

Definition 2.7 A ring R is α-compatible if $ab = 0 \Leftrightarrow a\alpha(b) = 0$ for $a, b \in R$ where α is an endomorphism of R.

Example 2.8 ([14, p. 225]) For a given field F.

Let $R = \left\{ (a_n) \in \prod_{n=1}^{\infty} F_n | a_n \text{ is a eventually constant} \right\}$ which is a subring of $\prod_{n=1}^{\infty} F_n$, where $F_n = F$ for $n = 1, 2, 3, \ldots$. Then R is commutative Von Neumann regular ring and hence it is right p.q. Baer. Let α be an identity map on R. Then R is α-right ring (α-compatible). But $R[[x, \alpha]]$ is not right p.q. Baer.

Theorem 2.9 Let M be an α-compatible module and $T = R[[x, \alpha]]$. Then $M[[x]]_T$ is p.q. Baer iff M_R is p.q. Baer and the right annihilator of any countable generated subset of M is generated by an idempotent.

Proof See reference [13, Theorem 2.5].

Theorem 2.10 Let R be a ring with IFP Property and $\alpha : R \rightarrow R$ be an endomorphism of R. Let R_R be an α-compatible module. Then $R[[x, \alpha]]$ is right p.q. Baer iff R is right p.q. Baer and any countable subset of $S_r(R)$ has generalized countable join.

Proof By Theorem 2.9, Proposition 2.6. The result is true.

Corollary 2.11 ([9, Theorem 5]) Let R be a ring with unity. Then $R[[x]]$ is right p.q. Baer if and only if R is right p.q. Baer and every countable subset of $S_r(R)$ has a generalized countable join.
Corollary 2.12 ([16, Theorem 3]) Let R be a ring such that $S_l(R) \subseteq C(R)$. Then $R[[x]]$ is right p.q. Baer iff R is right p.q. Baer and countable family of idempotents in R has a join.

Corollary 2.13 ([10, Theorem 3]) If R is a ring then $R[[x]]$ is reduced p.p.-ring if and only if R is a reduced p.p.-ring and any countable family of idempotents in R has a join in $C(R)$.

References

Received: May, 2010