On V-regular Semigroups

Hengwu Zheng

School of Mathematical Sciences, Qufu Normal University
Qufu, Shandong 273165, P.R. China
mailing address: Office of Educational Administration (Rizhao Campus)
Qufu Normal University, Rizhao, Shandong 276826, P.R. China
hwzheng163@163.com

Huiling Ren

School of Mathematical Sciences
Qufu Normal University
Qufu, Shandong 273165, P.R. China
huilingren000@163.com

Abstract

A regular semigroup S is V-regular if $V(ab) \subseteq V(b)V(a)$ for all $a, b \in S$. A characterization of a V-regular semigroup is given. Congruences on V-regular semigroups are described in terms of certain congruence pairs.

Mathematics Subject Classification: 20M17

Keywords: regular semigroup, V-regular semigroup, congruence, congruence pair

1 Introduction and Preliminaries

A regular semigroup S is called V-regular if $V(ab) \subseteq V(b)V(a)$ for all $a, b \in S$. This concept was introduced by Onstad [8]. This class of semigroups is dual to orthodox semigroups, namely, regular semigroups satisfy that $V(b)V(a) \subseteq V(ab)$ for all elements a, b in the semigroup. Properties of V-regular semigroups were given by Nambooripad and Pastijn in [7].

Congruences on regular semigroups have been explored extensively. The kernel-trace approach is an effective tool for handling congruences on regular semigroups, which had been investigated in the previous literature, such as Crvenković and Dolinka [1], Feigenbaum [2], Gomes [3, 4], Imaoka [6], Pastijn
and Petrich [9], Petrich [10], Scheiblich [11], Trotter [12, 13] and the author [14].

The purpose of this paper is to give a characterization of a V-regular semigroup, and to describe congruences on V-regular semigroups in terms of certain congruence pairs.

For standard terminology and notation in semigroup theory see Howie [5].

If S is a regular semigroup, $a \in S$, then $V(a)$ denotes the set of inverses of a in S. The set of idempotents of S is denoted by $E(S)$. On $E(S)$ we shall consider the natural partial order ω given by

$$e \omega f \iff ef = fe = e.$$

For $e, f \in E(S)$, $S(e, f) = fV(ef)e$ is the sandwich set of e and f.

The following simple statements will be applied without further mention: for $e, f \in E(S)$,

$$eLf \Rightarrow S(e, f) = \{f\},$$

$$eRf \Rightarrow S(e, f) = \{e\}.$$

If ρ is a congruence on S and $h \in S(e, f)$, then $h\rho \in S(e\rho, f\rho)$.

Let τ be a relation on S. The congruence generated by τ is denoted by τ^*.

If γ is an equivalence on S, then γ^0 is the greatest congruence on S contained in γ. $C(S)$ is the lattice of congruences on S.

Lemma 1.1. [7] A regular semigroup S is V-regular if and only if the partial band $(E(S), \circ)$ determined by S satisfies the following:

1. $\omega L = L \omega$;
2. $\omega R = R \omega$;
3. for all $e, f \in E(S), h \in S(e, f)$ there exist $e_1, f_2 \in E(S)$ such that e_1Le, f_2Rf, and $h = f_2e_1$.

Lemma 1.2. [5] Let S be a regular semigroup, $\rho \in C(S)$. If $a\rho \in E(S/\rho)$, then there exists $e \in E(S)$ such that $a\rho = e\rho$.

Lemma 1.3. Let S be a V-regular semigroup, $\rho \in C(S), a\rho \in E(S/\rho), x\rho \in S/\rho$. If $(a\rho)R(x\rho)$ in S/ρ, then there exists $e \in E(S)$ such that $a\rho = e\rho$ and eRx.

Proof. By Lemma 1.2, there exists $f \in E(S)$ such that $a\rho = f\rho$. Let $g \in E(S)$ be such that gRx. Then $(g\rho)R(x\rho)$. Since $a\rho = f\rho$ and $(a\rho)R(x\rho)$, we have $(f\rho)R(g\rho)$. Let $h \in S(f, g)$. Then $h\rho \in S(f\rho, g\rho)$, and so $h\rho = f\rho$. Notice that $hg \in E(S), hR(hg)\omega g$, it follows from Lemma 1.1 that there exists $e \in E(S)$ such that $h\omega e\rho$. Since gRx, eRx. Now $(h\rho)\omega(e\rho)R(g\rho)$ implies that $(f\rho)\omega(e\rho)R(f\rho)$. Hence $a\rho = f\rho = f\rho \cdot e\rho = e\rho$. \[\square\]
Corollary 1.4 Let S be a V-regular semigroup, $\rho \in C(S), e, f \in E(S)$. If $(e\rho)\mathcal{R}(f\rho)$, then there exist $g, h \in E(S)$ such that $g\mathcal{R}f, h\mathcal{R}e, g\rho = e\rho$ and $h\rho = f\rho$.

Remark The dual results of Lemma 1.3 and Corollary 1.4 hold.

2 Main Results

The theorem below give a characterization of a V-regular semigroup.

Theorem 2.1. A regular semigroup S is V-regular if and only if for all $a, b \in S, (ab)' \in V(ab)$ there exist $e_1, e_2, f_1, f_2 \in E(S)$ such that $b(ab)'a = f_2e_1, e_1LaRe_2, f_1LbRf_2, ab(ab)'\omega = 2$ and $(ab)'ab\omega f_1$.

Proof. \Rightarrow. Since S is V-regular, for all $a, b \in S, (ab)' \in V(ab)$ there exist $a' \in V(a), b' \in V(b)$ such that $(ab)' = b'a'$. Let

$$e_1 = a'a, f_1 = b'b, e_2 = aa', f_2 = bb'.$$

Then $e_1, e_2, f_1, f_2 \in E(S)$ and

$$b(ab)'a = bb'a'a = f_2e_1, e_1 = a'aLaRa = e_2, f_1 = b'bLbRb = f_2.$$

Now

$$(ab)(ab)'e_2 = (ab)(ab)'aa = (ab)(b'aa') = (ab)b'a' = (ab)(ab)'$$

and

$$e_2(ab)(ab)' = (aa')(ab)(ab)' = (aa'a)b(ab)' = (ab)(ab)' .$$

It follows that $(ab)(ab)' \omega e_2$.

Similarly, $(ab)'ab\omega f_1$.

\Leftarrow. Let a, b satisfy the condition stated in the theorem. Now e_1LaRe_2, f_1LbRf_2 imply that there exist

$$a' \in V(a) \cap (Le \cap Re_1), b' \in V(b) \cap (Lf \cap Rf_1)$$

such that

$$a'a = e_1, aa' = e_2, b'b = f_1, bb' = f_2.$$

Since $b(ab)'a = f_2e_1$, we have that

$$b'a' = (b'f_2)(e_1a') = b'(f_2e_1)a' = b'(ab)'aa'.$$

Thus

$$(b'a')(ab)(b'a') = (b'b(ab)'aa')(ab)(b'b(ab)'aa')$$

$$= b'b(ab)'ab(ab)'aa'$$

$$= b'b(ab)'aa' = b'a'$$
and
\[(ab)(b'a')(ab) = ab(b'ab')ab = ab(ab)'ab = ab,\]
that is, \(b'a' \in V(ab).\)

Also
\[(b'a')(ab) = (b'b(ab')ab = b'b(ab)'ab \]
\[= f_1(ab)'ab \]
\[= (ab)'ab \quad (\text{since } (ab)ab \omega f_1)\]

and
\[(ab)(b'a') = (ab)(b'b(ab')ab = ab(ab)'ab' \]
\[= (ab)(ab)e_2 \]
\[= (ab)(ab)' \quad (\text{since } (ab)(ab)' \omega e_2).\]

It follows that
\[(ab)' = (ab)'(ab)(ab)' = (b'a')(ab)(ab)' = (b'a')(ab)(b'a') = b'a'.\]

Therefore, \(S\) is V-regular. \(\square\)

Theorem 2.2. Let \(S\) be a V-regular semigroup, \(\rho \in C(S), a, b \in S.\) If \(a \rho b,\)
then for any \(a' \in V(a)\) there exists \(b' \in V(b)\) such that \(a' \rho b'.\)

Proof. Let \(a' \in V(a).\) Then \(a' \rho \in V(ap),\) Since \(a \rho b,\) we have that \(a' \rho \in V(ap) = V(bp).\) Let \(f \rho = bp \cdot a' \rho, f' \rho = a' \rho \cdot bp.\) Then
\[(f \rho)R(bp), (f' \rho)L(bp), f \rho, f' \rho \in E(S/\rho).\]

By Lemma 1.3 and its dual, there exist \(e, e' \in E(S)\) such that \(e R b L e', f \rho = e \rho\) and \(f' \rho = e' \rho.\)

Take \(b' \in V(b) \cap L_e \cap R_{e'}.\) Then \(b' \rho \in L_{e \rho} \cap R_{e' \rho}.\) Hence
\[b' \rho = e' \rho \cdot b' \rho \cdot e \rho = f' \rho \cdot b' \rho \cdot f \rho = a' \rho \rho b \cdot b' \rho \cdot b \rho a' \rho \]
\[= a' \rho \cdot b \rho b' \rho b \rho \cdot a' \rho = a' \rho \cdot b \rho \cdot a' \rho = a' \rho \cdot a \rho \cdot a' \rho = a' \rho,\]

that is, \(a' \rho b'.\) \(\square\)

To provide a characterization of congruences on V-regular semigroups in terms of certain congruence pairs, we need the following results.

Lemma 2.3. Let \(S\) be a V-regular semigroup, \(\rho \in C(S)\) with \(\tau = tr \rho.\)

(1) \((e \rho)R(f \rho)\) in \(S/\rho \Leftrightarrow e(\tau R) f \) in \(S \Leftrightarrow e(\tau R)f \) in \(S \); (e, f \(\in E(S)).\))
(2) \(R \tau R = R \tau R.\)

Proof. (1) Let \(e, f \in E(S)\) be such that \((e \rho)R(f \rho)\) in \(S/\rho.\) By Corollary 1.4, there exist \(g, h \in E(S)\) such that
\[gRf, hRg = e \rho, h \rho = f \rho.\]
Thus \(e\rho gRf, eRh\rho f, \) whence \(e(\tau R)f, e(\tau R)f. \)

If conversely \(e(\tau R)f, \) then exists \(g \in E(S) \) such that \(e\tau gRf, \) and so \((e\rho) = (g\rho)R(f\rho). \)

Similarly, \(e(\tau R)f \) implies that \((e\rho)R(f\rho). \)

(2) Obviously, \(R\tau R\tau R \supseteq R\tau R. \)

If \(a(\tau R\tau R)b \) for \(a, b \in S, \) then by [9, Lemma 2.6 (ii)] we have \((a\rho)R(bp) \) in \(S/\rho. \) Hence for \(a' \in V(a), b' \in V(b), \) we have

\[
(a'\rho)R(a\rho)R(bp)R(bb'\rho).
\]

Since \(aa', bb' \in E(S), \) by part (1) we have \((aa')\tau R(bb') \) and thus

\[
aR(aa')\tau R(bb')Rb,
\]

whence \(a(\tau R)b. \)

An equivalence \(\tau \) on the set \(E(S) \) of idempotents of a regular semigroup \(S \) is normal if \(\tau = \text{tr} \tau^* \) [9]. It follows from Lemma 2.3 [9] that an equivalence \(\tau \) on \(E(S) \) is normal if and only if \(\tau \) is the trace of a congruence on \(S. \)

Let \(K \) be a subset of a regular semigroup \(S. \) A congruence \(\rho \) on \(S \) saturates \(K \) if \(a \in K \) implies \(a\rho \subseteq K. \) The greatest congruence on \(S \) which saturates \(K \) is denoted by \(\pi_K. \) Recall from Result 1.5 [9] that for \(a, b \in S, a\pi_K b \) if and only if

\[
 xay \in K \iff xby \in K \ (x, y \in S^1),
\]

and \(\pi_K = \theta_K^0, \) where the equivalence relation \(\theta_K \) on \(S \) is defined by

\[
a\theta_K b \iff a, b \in K \text{ or } a, b \in S \setminus K.
\]

A subset \(K \) of a regular semigroup \(S \) is normal if \(K = \ker \pi_K \) [9]. Recall from [9] that a subset \(K \) of \(S \) is normal if and only if \(K \) is the kernel of a congruence on \(S. \)

The pair \((K, \tau) \) is a congruence pair for a regular semigroup \(S \) (see [9]) if

(i) \(K \) is a normal subset of \(S, \)
(ii) \(\tau \) is a normal equivalence on \(E(S), \)
(iii) \(K \subseteq \ker (L\tau L\tau L \cap R\tau R\tau R)^0, \)
(iv) \(\tau \subseteq \text{tr} \pi_K. \)

In such a case \(\rho(K, \tau) \) is defined by

\[
\rho(K, \tau) = \pi_K \cap (L\tau L\tau L \cap R\tau R\tau R)^0.
\]

Note that

\[
\rho(K, \tau) = (L\tau L\tau L \cap \theta_K \cap R\tau R\tau R)^0.
\]

When \(S \) is a V-regular semigroup it follows from Lemma 2.3 (2) and its dual result that

\[
\rho(K, \tau) = (L\tau L \cap \theta_K \cap R\tau R)^0.
\]
The characterization of congruences on a V-regular semigroup in terms of congruence pairs follows from [9, Theorem 2.13].

Theorem 2.4. If \((K, \tau)\) is a congruence pair for a V-regular semigroup \(S\), then \(\rho_{(K,\tau)}\) is the unique congruence on \(S\) such that \(\ker \rho_{(K,\tau)} = K\) and \(\text{tr} \rho_{(K,\tau)} = \tau\). Conversely, if \(\rho\) is a congruence on \(S\), then \((\ker \rho, \text{tr} \rho)\) is a congruence pair for \(S\) and \(\rho = \rho_{(\ker \rho, \text{tr} \rho)}\).

References

Received: April, 2010