Determination of Groups which Admit
a Particular Type of L-Fuzzy Subgroups

T. Eswarlal
Department of Basic Sciences
Al-Aman College of Engineering
Gudilova, Visakhapatnam-531173, India
teswarlal@yahoo.com

N. Rama Krishna
Department of Mathematics
Mrs A.V.N.College
Visakhapatnam-530001, India
nrk8367@yahoo.co.in

Department of Mathematics
G.V.P.College for P.G.Courses
Visakhapatnam, India

Abstract. Groups which posses a L-fuzzy subgroup μ, where L is a meet semi lattice satisfying the condition $\mu(x) \leq \mu(y)$ implies $\langle x \rangle \supseteq \langle y \rangle$ are determined.

Mathematics Subject Classification: 08A72, 20N25, 03E72

Keywords: Meet semi lattice, L-fuzzy subgroups, Cyclic groups of prime power order, Cyclic groups of square free order, Complete atomic lattice
1 Introduction

Mohamad Asaad in the paper [2] “Groups and fuzzy subgroups” characterized cyclic groups in the class of groups of prime power order which posses a fuzzy subgroup μ such that $\mu(x) \leq \mu(y) \Rightarrow \langle x \rangle \supseteq \langle y \rangle$. In fact he established the following theorem. If G is a group of prime power order then G is cyclic iff there exists a fuzzy subgroup A of G such that for any $x, y \in G$

\[(i) \ A(x) = A(y) \Rightarrow \langle x \rangle = \langle y \rangle,\]

\[(ii) \ A(x) > A(y) \Rightarrow \langle x \rangle \subset \langle y \rangle.\]

The objective of the authors is to give an elegant proof of the above theorem and to determine all groups which posses such a fuzzy subgroup. In the earlier papers [3],[4] the authors have provided partial answers to the above objective, and this paper provides a complete solution. Asaad’s study deals with only fuzzy subgroups taking values in [0,1]. Though [0,1] is a complete lattice, the absence of atoms makes it impossible to characterize all the groups which posses a fuzzy subgroup described above.

In order to remove this difficulty the authors consider the groups which posses L-fuzzy subgroups where L is a meet semi lattice. Infact it is established that if G is a group and L is a meet semi lattice and $\mu : G \rightarrow L$ is a L-fuzzy subgroup of G which satisfies the condition (1): $\mu(x) \leq \mu(y)$ implies $\langle x \rangle \supseteq \langle y \rangle$, then G is cyclic iff $Im\mu$ has a least element.

2. Preliminaries

In this section, we collect some important definitions and results which are already proved in earlier papers[3] and [4], for ready reference.

We begin with the following.

Definition 2.1: Let X be any non-empty set and let (L, \wedge) be a semi lattice, then any mapping μ from X into L is called an L-fuzzy subset of X.

Definition 2.2: Let G be a group. A L-fuzzy subset μ of G is called a L-fuzzy subgroup of G if (i) $\mu(xy) \geq \mu(x) \wedge \mu(y)$ for all $x, y \in G$, (ii) $\mu(x^{-1}) \geq \mu(x)$ for all x in G.

Theorem 2.3: Let G be a group, L a meet semi lattice and $\mu : G \rightarrow L$ is a L-fuzzy subgroup of G, satisfying the condition(1). Then G is cyclic iff $Im\mu$ has a least element.
Proof. Suppose G is a cyclic group generated by x. For any y in G,
$y = x^m$ for some $m \in \mathbb{Z}$ so that $\mu(y) = \mu(x^m) \geq \mu(x)$, which implies that
$\mu(x)$ is the least element of $\text{Im}\mu$. Conversely, if $\text{Im}\mu$ has the least element,
$\mu(x)$ where x is in G then, this implies $\langle x \rangle \supseteq \langle y \rangle$ for all y in G so that $y \in \langle x \rangle$.

Hence follows that $G = \langle x \rangle$.

\textbf{Theorem 2.4}:[4] If $\mu : G \to L$ is an L-fuzzy subgroup of G satisfying condi-
tion(1) and $\text{Im}\mu$ has least element then $\text{Im}\mu$ is a complete atomic lattice.

\textbf{Theorem 2.5}:[4] Let G be a group and G admits an L-fuzzy subgroup μ satisfying condition(1). Then the following conditions are hold.

(a) $G \cong \mathbb{Z}$ iff $\text{Im}\mu$ contains an infinite number of atoms.
(b) $G \cong \mathbb{Z}_n$ iff $\text{Im}\mu$ contains a finite number of atoms.

3 Some characterizations of cyclic groups in terms of L-fuzzy sub-
groups.

In this section, L stands for a meet semi lattice (L, \wedge) with atleasat two
elements.

We begin with the following.

\textbf{Theorem 3.1}: A group G is a cyclic group of prime power order iff for
some meet semi lattice L and L-fuzzy subgroup $\mu : G \to L$ satisfying the
condition(1), $\text{Im}\mu$ is a finite chain.

\textit{Proof.} Suppose G is a cyclic group of prime power order, say p^n. We know
that $[0, 1]$ is a meet semi lattice. Let $L = [0, 1]$. Now define a L-fuzzy subset
$\mu : G \to L$ by $\mu(x) = a_i$ if $o(x) = p^i$, $i = 1, 2, ..., n$

and $\mu(e) = a_0$ where $a_0 > a_1 > ... > a_n$. Thus $\text{Im}\mu$ is a finite chain.

We now prove that μ is L-fuzzy subgroup of G. Let $x, y \in G$. Since G is
a cyclic group of prime power order, we have $\langle x \rangle \subseteq \langle y \rangle$ or $\langle y \rangle \subseteq \langle x \rangle$. So
$\langle xy \rangle \subseteq \langle x \rangle$ or $\langle x \rangle \subseteq \langle x \rangle$. $\mu(xy) = a_i = a_i \wedge a_i \geq \mu(x) \wedge \mu(y)$, and clearly
$\mu(x^{-1}) \geq \mu(x)$ for all x in G. Therefore μ is a L-fuzzy subgroup of G. To
show μ satisfies the condition (1), suppose that $\mu(x) = \mu(y)$. Then we have
$\mu(x) = a_i = \mu(y)$ for some i and $o(x) = p^i = o(y)$. Since G is a cyclic
Proof. Suppose condition(1), with $\text{Im}\mu$ group of prime power order. Let y this implies that $\langle \mu, \mu \rangle _p$ with $\mu \approx \mu$. But isomorphic to μ. L exists a meet semi lattice A group

Theorem 3.3: A group G is a cyclic group of square free order if there exists a meet semi lattice L and $\mu : G \rightarrow L$ is a L-fuzzy subgroup of G satisfying the condition(1), with $\text{Im}\mu$ is a finite lattice.

Proof. Suppose G is a finite cyclic group. Then $G \cong \mathbb{Z}_m$. We know that $P(S)$, with $S = \{1, 2, \ldots, n\}$ is a meet semi lattice. Let $L = P(S)$. Now define $\mu : G \rightarrow L$ by $\mu(x) = \{x\}$ The set of all positive divisors of x.

Clearly μ is a L-fuzzy subgroup of G and satisfies the condition(1). For let $\mu(x) \leq \mu(y)$ implies $x \mid y$ then $\langle y \rangle \subseteq \langle x \rangle$. Since G is finite cyclic group follows that $\text{Im}\mu$ is finite lattice.

Conversely, suppose G admits a L-fuzzy subgroup of G satisfying condition(1) such that $\text{Im}\mu$ is finite lattice. This implies $\text{Im}\mu$ has a least element and hence G is a cyclic group. Also if $G \cong \mathbb{Z}$, then by theorem 2.5(a)[4], $\text{Im}\mu$ is infinite which is not the case. Thus G is a finite cyclic group.

Theorem 3.3: A group G is a cyclic group of square free order if there exists a meet semi lattice L and a L-fuzzy subgroup $\mu : G \rightarrow L$ satisfying the condition(1) such that $\text{Im}\mu$ is a finite Boolean lattice.

Proof. Suppose G is a cyclic group of square free order. We know that the subgroup lattice $S(G)$ is a Boolean lattice. Let $L = S(G)$. Now define $\mu :
$G \rightarrow L$ by $\mu(x) = \langle x \rangle'$, where $\langle x \rangle'$ is the Boolean complement of $\langle x \rangle$ in L. Clearly μ is a L-fuzzy subgroup as for any x, y in G, $\mu(xy) = \langle xy \rangle' \geq \langle x \rangle' \land \langle y \rangle' = \mu(x) \land \mu(y)$ and $\mu(x^{-1}) = \langle x^{-1} \rangle' = \langle x \rangle' = \mu(x)$. Also μ satisfying the condition(1) i.e., $\mu(x) \leq \mu(y) \Rightarrow \langle x \rangle \supset \langle y \rangle$. Clearly μ is one-one and onto. Infact $\text{Im}\mu$ is a dual lattice of L and hence it is a finite Boolean lattice.

Conversely, suppose G admits a L-fuzzy subgroup G satisfying condition(1) such that $\text{Im}\mu$ is a finite Boolean lattice. By theorem 2.3[4] follows that G is cyclic and that the subgroup lattice $S(G)$ is a Boolean lattice. Because $S(G)$ is a Boolean lattice, follows that G is finite, since the subgroup lattice of \mathbb{Z} is not a Boolean lattice and also follows that G is square free order.

Theorem 3.4: Let G be a group. Then $G \cong \mathbb{Z}$ iff for some meet semi lattice L and a L-fuzzy subgroup $\mu : G \rightarrow L$ satisfying the condition(1), $\text{Im}\mu$ is a complete atomic lattice with infinite number of atoms.

Proof. Let G be a group. Suppose $G \cong \mathbb{Z}$. We know that $\mathbf{P}(\mathbb{N})$ is a meet semi lattice. Let $L = \mathbf{P}(\mathbb{N})$. Now define $\mu : G \rightarrow L$ by $\mu(x) =$ The set of all the positive divisors of x. Clearly μ is a L-fuzzy subgroup of \mathbb{Z} and satisfies the condition (1). For let $\mu(x) \leq \mu(y)$ implies $x|y$ the $\langle y \rangle \subseteq \langle x \rangle$. Since G is cyclic group, from theorem 2.3[4], $\text{Im}\mu$ has a least element. By theorem 2.4[4] follows that $\text{Im}\mu$ is a complete atomic lattice. Note that for any positive integer x in \mathbb{Z}, $\mu(x)$ is an atom iff x is prime. Thus $\text{Im}\mu$ contains infinite number of atoms.

Conversely, let L be a meet semi lattice and G admit a L-fuzzy subgroup of G satisfying condition(1), with $\text{Im}\mu$ is a complete lattice, having infinite number of atoms. By theorem 2.5(a)[4] follows that G is isomorphic to \mathbb{Z}.

Finally we conclude with the following theorem.

Theorem 3.5: A group G is cyclic iff there exists a meet semi lattice L and a L-fuzzy subgroup $\mu : G \rightarrow L$ satisfying the condition(1), with $\text{Im}\mu$ is a complete atomic lattice.

Acknowledgements: The authors are grateful to Prof. K.L.N. Swamy for his valuable suggestions and discussions on this work.
References:

Received: April, 2010