Strong S_1-Near Rings

S. Silviya

ssilviyafdo@yahoo.co.in

R.Balakrishnan

Department of Mathematics
V.O.Chidambaranar College
Tuticorin,India

T. Tamizh Chelvam

Department of Mathematics
Manonmaniam Sundaranar University
Tirunelveli,India

Abstract

In [3] we defined a right near ring $(N,+,\cdot)$ to be an S_1-near ring if for every $a \in N$, there exists $x \in N^*$, where $N^* = N - \{0\}$, such that $axa = xa$. In this paper we call N a Strong S_1-near ring if for every $a \in N$, $\{x \in N^* | axa = xa \} = N^*$. We study some of its important properties, obtain a characterization and also a structure theorem under certain conditions.

Mathematics Subject Classification: 16Y30

Keywords: S_1-near ring, subdirectly irreducible, Strong S_1-near ring

1 Introduction

Throughout this paper N stands for a right near ring $(N,+,\cdot)$ and '0' denotes the identity element of $(N,+)$. A non-empty subset A of N is called a multiplicative system if A is closed under multiplication [2]. N is said to be regular if for every $a \in N$ there exists $b \in N$ such that $a = aba$. A map f from N into N is called a mate function for N if $a = af(a)a$ for all a in N. $f(a)$ is called a mate of a [4]. For basic concepts and terms used but not defined in this paper we refer to Pilz[1].
2 Notations

We freely make use of the following notations in this paper.

(a) \(E \) denotes the set of all idempotents of \(N \) (\(a \in E \) if and only if \(a^2 = a \)).
(b) \(N^* \) denotes the set of all non-zero elements of \(N \), i.e \(N^* = N - \{0\} \).
(c) \(N_0 = \{ a \in N \mid a0 = 0 \} \) - the zero symmetric part of \(N \) (\(N \) is called zero symmetric if \(N = N_0 \)).

3 Preliminary Results

We freely make use of the following results from [1] and [4] and designate them as \(R(1), R(2) \), etc.,

\(R(1) \) \(N \) is subdirectly irreducible if and only if the intersection of any family of non-zero ideals is again non-zero (Theorem 1.60, p.25 of [1]).
\(R(2) \) \(N \) has IFP (i.e Insertion of Factors Property) if for \(x,y \in N \), \(xy = 0 \Rightarrow xny = 0 \) for all \(n \in N \) (Definition 9.1, p.288 of [1]).
\(R(3) \) \(N \) has Strong IFP if for all ideals \(I \) of \(N \), \(ab \in I \Rightarrow anb \in I \) for all \(a,b,n \in N \) (Proposition 9.2, p.289 of [1]).
\(R(4) \) A zero symmetric near ring \(N \) has IFP if and only if \((0:n) \) is an ideal for all \(n \in N \) (Theorem 9.3, p.289 of [1]).
\(R(5) \) \(N \) has Property(\(P_4 \)) if for all ideals \(I \) of \(N \), \(xy \in I \Rightarrow yx \in I \) (Definition 9.4, p.289 of [1]).
\(R(6) \) If \(N \) has IFP and if \(xy = 0 \Rightarrow yx = 0 \) for \(x,y \in N \) then we say that \(N \) has \((*,\text{IFP})\) (Lemma 2.3 of [4]).

4 \(S_1 \)-near rings and the subsets \(N_{S_1}(a) \), \(a \in N \)

As in [3] we have the following Definition.

Definition 4.1 \(N \) is called an \(S_1 \)-near ring if for every \(a \in N \), there exists \(x \in N^* \) such that \(axa = xa \).

Throughout this paper we use the following notation.

Notation 4.2 For any \(a \in N \), we denote \(\{ x \in N^* \mid axa = xa \} \) by \(N_{S_1}(a) \).

Remark 4.3 It easily follows that \(N \) is an \(S_1 \)-near ring if and only if \(N_{S_1}(a) \neq \phi \) for all \(a \in N \).

The following examples substantiate this remark.
Examples 4.4 (a) Let \((N, +, \cdot)\) be the near ring where \((N, +)\) is the Klein’s four group \(N = \{0, a, b, c\}\) and the semigroup operation \(\cdot\) is defined as follows (Scheme(1), p.408 of Pilz[1]).

\[
\begin{array}{c|cccc}
\cdot & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0 \\
a & 0 & a & a & a \\
b & 0 & b & b & b \\
c & 0 & c & c & c \\
\end{array}
\]

Clearly this is an \(S_1\)-near ring. We observe that \(N_{S_1}(x) \neq \emptyset\) for all \(x \in N\).

\(N_{S_1}(0) = \{a, b, c\}\), \(N_{S_1}(a) = \{a\}\), \(N_{S_1}(b) = \{b\}\), \(N_{S_1}(c) = \{c\}\).

(b) We consider the near ring \((N, +, \cdot)\) where \((N, +)\) is the group of integers modulo 5 and \(\cdot\) is defined as follows (Scheme(6), p.408 of Pilz[1]).

\[
\begin{array}{c|cccc}
\cdot & 0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 4 & 1 & 0 & 0 \\
2 & 0 & 3 & 2 & 0 & 0 \\
3 & 0 & 2 & 3 & 0 & 0 \\
4 & 0 & 0 & 1 & 4 & 0 \\
\end{array}
\]

It is easy to see that this is not an \(S_1\)-near ring. It is worth nothing that \(N_{S_1}(2) = \emptyset\).

We furnish below a condition for an \(S_1\)-near ring to be regular.

Proposition 4.5 Let \(N\) be an \(S_1\)-near ring. If \(a \in N_{S_1}(a) a\) for all \(a \in N\) then \(N\) is regular.

Proof Let \(a \in N\). By hypothesis \(a = xa\) for some \(x \in N_{S_1}(a)\). Since \(x \in N_{S_1}(a)\), \(axa = xa\). Therefore \(a = axa\). Thus \(N\) is regular.

Remark 4.6 Converse of Proposition 4.5 is not valid. Consider the near ring \((N, +, \cdot)\) where \((N, +)\) is the group of integers modulo 6 and \(\cdot\) is defined as follows (Scheme (27), p.409 of Pilz[1]).

\[
\begin{array}{c|cccccc}
\cdot & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & 3 & 4 & 5 \\
2 & 0 & 2 & 4 & 0 & 2 & 4 \\
3 & 0 & 3 & 0 & 3 & 0 & 3 \\
4 & 0 & 4 & 2 & 0 & 4 & 2 \\
5 & 0 & 5 & 4 & 3 & 2 & 1 \\
\end{array}
\]
This S_1-near ring is regular. But $2 \notin N_{S_1}(2)$ and $5 \notin N_{S_1}(5)$.

Lemma 4.7 Let N be an S_1-near ring. Then $N_{S_1}(a)$ has no non-zero zero divisors if and only if $N_{S_1}(a)$ is a multiplicative system.

Proof Since N is an S_1-near ring, $N_{S_1}(a) \neq \emptyset$ for all $a \in N$.

For the 'only if' part, let $x,y \in N_{S_1}(a)$. Then $x,y \in N^*$ and $ax = xa$, $aya = ya$. It follows that $a(xy)a = ax(ya) = ax(aya) = (ax)ya = (xa)ya = x(aya) = x(ya) = (xy)a$. Further $N_{S_1}(a)$ has no non-zero zero divisors, $xy \neq 0$. Consequently $xy \in N_{S_1}(a)$. Thus $N_{S_1}(a)$ is a multiplicative system.

For the 'if' part, let $x,y \in N_{S_1}(a)$. Since $N_{S_1}(a)$ is a multiplicative system, $xy \in N_{S_1}(a)$. As $N_{S_1}(a) \subset N^*$, it follows that $xy \neq 0$ and hence $N_{S_1}(a)$ has no non-zero zero divisors.

The following is a simple characterization of zero symmetric near ring.

Proposition 4.8 N is zero symmetric if and only if $N^* = N_{S_1}(0)$.

Proof For the 'only if' part, let $x \in N^*$. Since $N = N_0$, $x0 = 0 \Rightarrow 0x0 = 0 = x0 \Rightarrow x \in N_{S_1}(0)$. Therefore $N^* \subset N_{S_1}(0)$. Clearly then $N^* = N_{S_1}(0)$.

For the 'if' part we observe that $N^* = N_{S_1}(0) \Rightarrow 0x0 = x0$ for all $x \in N^* \Rightarrow x0 = 0$ for all $x \in N^*$. Consequently, N is zero symmetric.

5 Strong S_1-Near Rings

In this section we define the concept of Strong S_1-near rings, study some of its important properties, obtain a structure theorem and also a characterization of such near rings.

Definition 5.1 A near ring N is said to be a Strong S_1-near ring if $N^* = N_{S_1}(a)$ for all $a \in N$.

Examples 5.2 (a) Let $(N,+)$ be the Klein’s four group with $N = \{0,a,b,c\}$ and we define ‘.’ as follows (Scheme(7), p-408 of Pilz[1]).

<table>
<thead>
<tr>
<th>.</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

The near ring $(N,+.,.)$ is a Strong S_1-near ring (In general, a commutative and Boolean near ring is a Strong S_1-near ring).

(b) Let $(N,+)$ be the Symmetric group of degree 3 with $N = \{0,a,b,c,x,y\}$ and we define ‘.’ as follows (Scheme(37), p.411 of Pilz[1])
This near ring is a Strong S_1-near ring. It is worth noting that it is not regular.

Proposition 5.3 N is a Strong S_1-near ring if and only if $axa = xa$ for all $a \in N$ and for all $x \in N^*$.

Proof is straightforward.

The following Corollary is an immediate consequence of Proposition 5.3 and Definition 4.1

Corollary 5.4 Every Strong S_1-near ring is an S_1-near ring

Remark 5.5 Converse of Corollary 5.4 is not valid. For example, consider the near ring $(N, +, \cdot)$ where $(N, +)$ is the Klein’s four group with $N = \{0, a, b, c\}$ and \cdot is defined as follows (Scheme(9), p.408 of Pilz[1])

<table>
<thead>
<tr>
<th>\cdot</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

We observe that this is an S_1-near ring; however it is not a Strong S_1-near ring (since $cbc \neq bc$).

Proposition 5.6 If N is a Strong S_1-near ring then N is zero symmetric.

Proof Since N is a Strong S_1-near ring, from Proposition 5.3, $axa = xa$ for all $a \in N$ and for all $x \in N^*$. Putting $a = 0$ we get $0x0 = x0$ for all $x \in N^*$ and this implies $x0 = 0$ for all $x \in N^*$ and the desired result now follows.

Remark 5.7 The example given under Remark 5.5 shows that the converse of Proposition 5.6 is not valid.

We furnish below a characterization of Strong S_1-near rings.
Theorem 5.8 N is a Strong S_1-near ring if and only if $axa = xa$ for all $a, x \in N$.

Proof If N is a Strong S_1-near ring then from Proposition 5.6 N is zero symmetric $\Rightarrow a0 = 0$ for all $a \in N \Rightarrow a0a = 0 = 0a$ for all $a \in N$. The rest of the proof is taken care of by Proposition 5.3.

We prove some properties of Strong S_1-near ring in the following Theorem.

Theorem 5.9 Let N be a Strong S_1-near ring. Then
(i) ab and $ba \in E$ for all $a, b \in N$.
(ii) N has (*,IFP).
(iii) N has Strong IFP.
(iv) N has Property (P4).

Proof Let N be a Strong S_1-near ring. Then it follows from Theorem 5.8 that $axa = xa$ for all $a, x \in N$(1)
(i) Let $a, b \in N$. Now (1) implies that $ab = bab = (ba)b = (aba)b = (ab)^2 \Rightarrow ab \in E$. In a similar fashion we get $ba \in E$.
(ii) Suppose $xy = 0$ for $x, y \in N$..........(2).
Now $yx = x(xy) = (x(yx)) = (xy)x = 0x \Rightarrow 0$.
Also for every $n \in N$, $xny = x(ny) = x(ny)$ by (1) $= (xy)ny = 0ny = 0$. Thus N has (*,IFP).
(iii) Let I be an ideal of N and let $ab \in I$. Proposition 5.6 guarantees that N is zero symmetric. Therefore $NI \subset I$(3) and $IN \subset I$...(4).
Now $anb = (an)b$ by (1) $= (na(nb) = na(nbn)$ by (1) $= n(ab)nb \in I$ by (3) and (4).
From $R(3)$ it follows that N has Strong IFP.
(iv) Let I be an ideal of N and let $xy \in I$. As in (iii) above $IN \subset I$ and $NI \subset I$. Now $(yx)^2 = yxyx = y(xy)x \in NI = (NI)N \subset IN \subset I$. Also $(yx)^2 \in I$.
Appealing to (i) we get $yx = (yx)^2 \in I$. Consequently N has (P4).

With a view to establishing a structure theorem for Strong S_1-near rings, we prove the following Theorems.

Theorem 5.10 Any homomorphic image of a Strong S_1-near ring is a Strong S_1-near ring.

Proof is straightforward.

Theorem 5.11 Every Strong S_1-near ring is isomorphic to a subdirect product of subdirectly irreducible Strong S_1-near rings.

Proof By Theorem 1.62, p.26 of Pilz[1], N is isomorphic to a subdirect product of subdirectly irreducible near rings N_i’s say and each N_i is a homomorphic image of N under projection map π_i. The desired result now follows from Theorem 5.10.
Theorem 5.12 Let N be a Strong S_1-near ring with mate function f. Then N is subdirectly irreducible if and only if N is Simple.

Proof Suppose N is subdirectly irreducible. First we prove that for any non-zero idempotent e in N, $(0:e) = \{0\}$. Let $D = \{e \in E - \{0\} | (0 : e) \neq \{0\}\}$. Suppose $D \neq \phi$. Let $B = \bigcap_{e \in D} (0 : e)$. Now Theorem 5.9 demands that N has (\ast,IFP). From Proposition 5.6 and $R(4)$ we see that $(0:e)$ is an ideal. Since N is subdirectly irreducible, $R(1)$ shows that $B \neq \{0\}$.

Let $a \in B - \{0\} \Rightarrow ae = 0$ for all $e \in D$ (1)

Now $f(a)ae = f(a)0 = 0$ [Since $N = N_0$] $\Rightarrow ef(a)a = 0 \Rightarrow e \in (0 : f(a)a) \Rightarrow f(a)a \in D \Rightarrow af(a)a = 0$ [by (1)] $\Rightarrow a = 0$ which is a contradiction to $a \neq 0$.

Consequently for any non-zero idempotent e in N, $(0:e) = \{0\}$. Since N is a Strong S_1-near ring, from Theorem 5.8 we get $exe = xe \Rightarrow (ex-x)e = 0 \Rightarrow ex-x \in (0:e) = \{0\} \Rightarrow ex = x$ for all $x \in N$. i.e $x = ex \in Nx \Rightarrow N = Nx$ for all $x \in N$. Thus N is Simple.

Converse is obvious.

We conclude our discussion with the following structure theorem for Strong S_1-near rings.

Theorem 5.13 Every Strong S_1-near ring with a mate function is isomorphic to a subdirect product of Simple near rings.

Proof Collecting the pieces proved in Theorems 5.11 and 5.12 we get the desired result.

References

Received: January, 2010