Ideals and Direct Products of Zero-Square Nearrings

Satyanarayana Bhavanari

Department of Mathematics, Acharya Nagarjuna University
Nagarjuna Nagar-522 510, Andhra Pradesh, India
bhavanari2002@yahoo.co.in

Godloza Lungisile

Department of Mathematical Sciences, University of South Africa
P.O. Box. 392, Pretoria, South Africa
godlol@unisa.ac.za

Babu Prasad M.

Vijayawada, Andhra Pradesh

Syam Prasad Kuncham

Department of Mathematics, Manipal Institute of Technology
Manipal University, Manipal 576 104, India
kunchamsyamprasad@gmail.com

Abstract

We consider a zero symmetric right nearring N. The concepts, zero-square nearring of type-1/type-2, zero-square ideal of type-1/type-2, and zero square dimension of a nearring were introduced and obtained several important results. Finally, some relations between the zero-square dimension of the direct sum of finite number of nearrings, and the sum of the zero-square dimension of individual nearrings are obtained. Necessary examples are provided.

Mathematics Subject Classification: 16A 55, 03E 72, 16Y 30

Keywords: zero-square nearring, zero-square ideal, direct sum, zero-square dimension, uniform ideal, essential ideal.
1 Introduction

Throughout the paper N stands for nearring. A nearring N a zero-square if $x^2 = 0$ for all $x \in N$.

A nearring N is said to be monogenic if there exists $0 \neq a \in N$ such that $Na = N$. A left (respectively, right) ideal I of N is said to be monogenic if there exists $0 \neq a \in I$ such that $Na = I$ (respectively, $aN = I$). A monogenic nearring N is primitive if and only if N is faithful and simple (which is same as $0 -$ primitive as in 4.2 of Pilz [2]).

A proper ideal P of N is said to be a prime ideal if it satisfies the condition: A, B are ideals of N such that $AB \subseteq P$ imply $A \subseteq P$ or $B \subseteq P$. A proper ideal S of N is said to be a semiprime ideal if it satisfies the condition: A is an ideal of N with $A^2 \subseteq S$ implies $A \subseteq S$. A nearring N is a subdirect product of family of nearrings $\{S_i : i \in I\}$ if there is a monomorphism $k : N \rightarrow S = \prod_{i \in I} S_i$ such that $\pi_i ok$ is epimorphism for all $i \in I$, where $\pi_i : S \rightarrow S_i$ canonical epimorphism.

An element $x \in N$ is said to be nilpotent if there exists a positive integer n such that $x^n = 0$. If every element of an ideal I of N is nilpotent, then we say that I is a nil ideal. For an ideal I of N, the quotient nearring of N with respect to I is denoted by N/I. N is said to be nil if every element of N is nilpotent.

Let I, J be two ideals of N such that $I \subseteq J$. We say that I is essential in J (denoted by $I \lesssim J$) if it satisfies the condition: K is an ideal of N, $K \subseteq J$, $I \cap K = (0)$ imply $K = (0)$. If I is essential in J and $I \neq J$, then we say that J is a proper essential extension of I. A non-zero ideal I of N is said to be uniform if B is a non zero ideal of N, and $B \subseteq I$ implies $B \leq_e I$.

We say that N has finite dimension on ideals (denoted by FDI) if N do not contain infinite number of non zero ideals whose sum is direct.

Theorem 1.1 N is a subdirect product of the nearrings $\{S_i : i \in I\}$, if and only if $S_i \cong N/K_i$, K_i an ideal of N and $\bigcap_{i \in I} K_i = 0$.

Theorem 1.2 (Satyanarayana et.al. [5]): Suppose N is a nearring with FDI. Then
(i) (existence) there exist uniform (two sided) ideals $U_1, U_2, ..., U_n$ in N whose sum is direct and essential in N;
(ii) (uniqueness) if $V_i, 1 \leq i \leq k$, are uniform ideals of N whose sum is direct and essential in N, then $k = n$.

The number n of the above Theorem is independent of the choice of the uniform ideals, and this number n is called the dimension of N (it is denoted by $dimN$).
Theorem 1.3 (Satyanarayana et.al. [5]): Suppose $I_i, 1 \leq i \leq k$ are ideals of the nearrings $N_i, 1 \leq i \leq k$ respectively. Then the following two conditions are equivalent:

(i) $I_i \leq_e N_i, 1 \leq i \leq k$;
(ii) $I_1 \oplus I_2 \oplus ... \oplus I_k \leq_e N_1 \oplus N_2 \oplus ... \oplus N_k$.

From Theorems 1.2 and 1.3, we get the following theorem.

Theorem 1.4 (Satyanarayana et.al. [5]): If $N_i, 1 \leq i \leq k$ are nearrings with FDI, then $\dim(N_1 \oplus N_2 \oplus ... \oplus N_k) = \dim N_1 + \dim N_2 + ... + \dim N_k$.

The ideal generated by an element $x \in N$ is denoted by $\langle x \rangle$. We do not present the proofs of some results in this paper when they are simple or parallel to those results in the literature on nearring theory.

2 Zero-square Nearrings

In this section we define and study the concepts zero-square nearring of type-1/type-2. Zero-square nearring of type-2 is same as the zero-square nearring studied by the earlier authors. We prove that every zero-square nearring of type-1 is a zero-square nearring of type-2, but the converse need not be true, in general.

Definition 2.1 (i) A nearring N is said to be a zero-square nearring of type-1 if $x^2 = 0$ for all $x \in N$, and there exists two elements $a, b \in N$ such that $ab \neq 0$.

(ii) A nearring N is said to be a zero-square nearring of type-2 if $x^2 = 0$ for all $x \in N$.

Zero-square nearrings of type-2 are same as the zero-square nearrings studied by the earlier authors like Stanley. Every zero-square nearring of type-1 is a zero-square nearring of type-2.

Example 2.2 (i) Every null nearring (that is $N^2 = 0$) is a zero-square nearring of type-2, but not of type 1.

(ii) Let $(G, +)$ be a group (not necessarily Abelian). Define multiplicative operation on G by $a \cdot b = 0$ for all $a, b \in G$, where 0 is additive identity. Then $(G, +, \cdot)$ is a null nearring. So $(G, +, \cdot)$ is a zero-square nearring of type-2, but not of type-1. Now we can conclude that every group can be made into a zero-square nearring of type-2.
(iii). Suppose that N is a non zero Boolean nearring. Then $x^2 = x$ for all $x \in N$. So N is a non-null nearring and for any $x \neq 0$, we have $x^2 \neq 0$. Hence every non-zero Boolean nearring can neither a zero-square nearring of type-1 nor a zero-square nearring of type-2.

(iv). Let S be a non null nearring (that is, $S^2 \neq 0$). Write $N = S \times S \times S$. Define addition on N component wise. Define multiplication on N by $(x_1, y_1, z_1) \cdot (x_2, y_2, z_2) = (0, 0, x_1y_2 - x_2y_1)$. Now it is clear that $N^2 \neq 0$ (that is, N is not a null nearring) and $a^2 = 0$ for all $a \in N$. Hence N is a zero-square nearring of type-1.

Theorem 2.3 Suppose N is a zero-square nearring of type-2. Then

(i) $aN \neq N$ for all $0 \neq a \in N$.

(ii) If N is simple, then $N^2 = 0$.

Proof: (i) Let N be a zero-square nearring, and $0 \neq a \in N$. Suppose $aN = N$. Then $a \in N = aN$ implies $a = ar$ for some $r \in N$. Now $a = ar = (ar)r = ar^2 = a0 = 0$ (since N is zero symmetric nearring), a contradiction.

(ii) Suppose $N^2 \neq 0$. Then there exist $s, a \in N$ such that $as \neq 0$. Now $0 \neq as \in aN$. Since N is simple and $aN \neq 0$, we have that $aN = N$, a contradiction. Hence $N^2 = 0$.

Corollary 2.4 A primitive nearring cannot be a zero-square nearring of type-2.

Proof: Since N is primitive by definition 4.2 of Pilz [2], it is faithful and simple. Let $0 \neq r \in N$. Since N is faithful we have $Nr \neq 0$. Now $0 \neq Nr \subseteq NN$. This means $NN \neq 0$, a contradiction by Theorem 2.3 (ii).

Corollary 2.5 Let N be a zero-square nearring of type-2.

(i) If I is a non zero left ideal of N, then I can not be a monogenic left ideal; and

(ii) If I is a non zero right ideal of N, then I can not be a monogenic right ideal.

Proof: (i) In a contrary way, suppose that I is a monogenic left ideal. Then there exist $0 \neq a \in I$ such that $Na = I$, a contradiction to the Theorem 2.3(i).

(ii) Similar to (i).

Corollary 2.6 If N is non-zero zero-square nearring of type-2, then

(i) $Nr \neq N$ for all $r \in N$; and

(ii) $rN \neq N$ for all $r \in N$.

Proof: The proof follows by taking N instead of I in Corollary 2.5.
3 Zero-square Ideals

In this section we define the substructure zero-square ideal of type-1 (respectively, type-2) of nearring and obtained related results.

Definition 3.1 A proper ideal I of N is said to be a zero-square ideal of type-1 (respectively, type-2) if the quotient nearring N/I is a zero-square nearring of type-1 (respectively, type-2).

Remark 3.2 (i) If N is a zero-square nearring of type-2, then every ideal I of N is a zero-square ideal of type-2. The converse of this statement is not true. For this observe the following example 3.3.

(ii) If N is a zero-square nearring of type-2, then every ideal of N is also a zero-square nearring of type-2.

Example 3.3 Consider Z_2, the nearring of integers modulo 2. Z_2 is not a zero-square nearring of type-2. Let G be a non-zero additive group and define $a \cdot b = 0$ for all $a, b \in G$. Now $(G, +)$ is a zero-square nearring of type-2. Write $N = Z_2 \oplus G$, the direct sum of nearrings Z_2 and G. Now $I = Z_2$ is an ideal of N; for any $x + I \in N/I$, we get that $(x + I)^2 = 0 + I$; and hence I is a zero-square ideal of type-2. Since $1 = 1 + 0 \in Z_2 + G = N$ and $1^2 = 1 \neq 0$, it follows that N is not a zero-square nearring of type-2.

Example 3.4 Consider $N = Z_8$, the additive group of integers modulo 8. Let us define the multiplication on N as it is given by the table. Observe that: $I_2 = 0, 4$ is an ideal of N. Now $N^2 = \{0, 4\} \subseteq I_2$; and $N/I_2 = \{0 + I_2, 1 + I_2, 2 + I_2, 3 + I_2\}$.

\[
\begin{array}{cccccccc}
\cdot & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
5 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
7 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 \\
\end{array}
\]

Also observe that $(N/I_2)^2 = 0$, and so N/I_2 is not a zero-square nearring, where as N is a zero-square nearring. Note that I_2 is not a zero-square ideal.

Remark 3.5 If I, J be two zero-square ideals of type-2, then $I \cap J$ is also a zero-square ideal of type-2.
Verification: Let $x \in N/(I \cap J)$. Now, $x + I \in N/I$. Since I is zero-square ideal of type 2, we have $x^2 + I = 0 + I$ implies $x^2 \in I$. Similarly we can show that $x^2 \in J$ and so $x^2 \in I \cap J$. Now $x^2 + (I \cap J) = 0 + (I \cap J)$ implies $(x + (I \cap J))^2 = 0$ in $N/(I \cap J)$. Hence $N/(I \cap J)$ is a zero-square nearring of type-2. Therefore $I \cap J$ is a zero-square ideal of type-2.

Definition 3.6 A class B of nearrings is said to be homomorphically closed if every homomorphic image of N is in B for all N in B.

Theorem 3.7 The class B of all zero-square nearrings of type-2 is homomorphically closed.

Proof: Let $N \in B$ and I an ideal of N. Take $x + I \in N/I$. Now $(x + I)^2 = x^2 + I = 0 + I$ (since N is a zero-square nearring of type-2). So N/I is a zero-square nearring of type-2 and hence $N/I \in B$.

Remark 3.8 Suppose I is an ideal of N, I is a zero-square ideal of type-2 and also a zero-square nearring of type-2, then $x^4 = 0$ for all $x \in N$.

Verification: $x \in N \Rightarrow x + I \in N/I$. Now $(x + I)^2 = 0 + I$ (since I is a zero-square ideal of type-2). This means $x^2 \in I$, which implies that $(x^2)^2 = 0$ (since I is a zero-square nearring of type-2). Therefore $x^4 = 0$.

Theorem 3.9 Let N be a zero-square nearring of type-2 and I an ideal of N. Then the following two conditions are equivalent:

(i) $N^2 \not\subseteq I$; and (ii) I is a zero-square ideal of type-1.

Proof: (i) \Rightarrow (ii): By Remark 3.2, we get that I is a zero-square ideal of type-2. Since $N^2 \not\subseteq I$, there exist $x, y \in N$ with $xy \not\in I$ and so $(x + I)(y + I) \neq 0 + I$ in N/I.

Therefore N/I is a zero-square nearring of type-1 and so I is a zero-square ideal of type-1.

(ii) \Rightarrow (i): Since N/I is a zero-square nearring of type-1, there exist two non-zero elements $c + I$ and $d + I$ in N/I whose product is non-zero in N/I. This gives that $cd \notin I$ and so $N^2 \not\subseteq I$.

Corollary 3.10 (i) Let I and J be ideals of a zero-square nearring N of type-2 with $I \subseteq J$. If J is a zero-square ideal of type-1, then I is also a zero-square ideal of type-1.

(ii) Intersection of any collection of zero-square ideals of type-1 is also a zero-square ideal.

Corollary 3.11 Let N be the class of all zero-square nearrings N of type-1 for which $N^2 \not\subseteq I$ for all non-zero ideals I of N. Then the class N is homomorphically closed.
Proof: Let \(N \in \mathbf{N} \) and \(h : N \rightarrow N^1 \) be an epimorphism. Then \(N/I \cong N^1 \), where \(I = \ker h \), an ideal of \(N \).

Case (i): Suppose \(h \) is an isomorphism. Then \(I = 0 \). Since \(N \) is a zero-square nearring of type-1, there exists \(x, y \in N \) such that \(xy \neq 0 \). So \(N^2 \neq 0 \) and \(N^2 \not\subseteq I \).

Case (ii): Suppose \(h \) is not an isomorphism. Then \(I \neq 0 \). From the assumption, \(N^2 \not\subseteq I \). Now by Theorem 3.8, \(I \) is a zero-square ideal of type-1 and hence \(N^1 \cong N/I \in \mathbf{N} \).

Corollary 3.12 In a zero-square nearring \(N \) of type-2,
(i) every semi-prime ideal \(S \) of \(N \) is a zero-square ideal of type-1; and
(ii) every prime ideal \(P \) of \(N \) is a zero-square ideal of type-1.

Proof: (i) Suppose \(S \) is not a zero-square ideal of type-1. Then by Theorem 3.8 we get that \(N^2 \subseteq S \). Since \(S \) is semi prime ideal, we have that \(S = N \), a contradiction.

(ii) Follows from (i) since every prime ideal is a semi-prime ideal. This completes the proof.

We denote \(ZS1(N) = \) the intersection of all zero-square non-zero ideals of \(N \) of type-1; and \(ZS2(N) = \) the intersection of all zero-square non-zero ideals of \(N \) of type-2. If there are no non-zero zero-square ideals of type-1 (respectively, type-2) in \(N \) then we define \(ZS1(N) = N \) (respectively, \(ZS2(N) = N \)).

Remark 3.13 If \(N \) is a zero-square nearring of type-2, then we have the following:
(i). By Theorem 3.8, we get that if \(N \) is a zero-square nearring of type-2, then \(ZS1(N) = \cap\{ I : I \text{ is a non-zero ideal of } N \text{ with } N^2 \not\subseteq I \} \);

(ii). If \(ZS2(N) = 0 \) (respectively, \(ZS1(N) = 0 \)); then by Theorem 1.2, it follows that \(N \) is a subdirect product of the zero-square nearrings \(N/I \), where \(I \) runs over all non-zero zero-square ideals of type-2 (respectively, type-1) in \(N \). If \(ZS2(N) \neq 0 \) (respectively, \(ZS1(N) \neq 0 \), then \(ZS2(N) \) (respectively, \(ZS1(N) \)) is the smallest non-zero zero-square ideal of type-2 (respectively, type-1), among all non-zero zero-square ideals of type-2 (respectively, type-1).

(iii). In Example 3.3, \(N = Z_2 \oplus G \) is not a zero-square nearring of type-2. In this case \(ZS2(N) = Z_2 \). Note that \((0) \neq ZS2(N) \neq N \).

(iv). If \(N \) is a zero-square nearring of type-2 and \(N \) contains a zero-square ideal of type 1, then by Corollary 3.9, we get that \(ZS1(N) \subseteq I \).

(v). If \(N^2 = 0 \), then \(N \) contains no zero-square ideals of type-1 and so \(ZS1(N) = N \).
Theorem 3.14 If there exists a chain $N = I_0 \supset I_1 \supset I_2 \supset ... \supset I_k = (0)$ of ideals of N such that I_{s+1} is a zero-square ideal of type-2 in the nearring I_s, then N is a nil ideal of N. In particular, $x^{(2^k)} = 0$ for all $x \in N$.

Proof: Let $x \in N = I_0$. Since I_1 is zero-square ideal of type-2 in the nearring I_0 and $x \in I_0$ we have that $(x + I_1)^2 = 0$ in I_0/I_1. So $x^2 \in I_1$. Since $x^2 \in I_1$ and I_2 is a zero-square ideal of type-2 in the nearring I_1, it follows that $(x^2 + I_2)^2 = 0$ in I_1/I_2 and so $x^4 \in I_2$. If we continue this process, eventually, we get that $x^{(2^k)} \in 0$. Thus $x^{(2^k)} = 0$ and this is true for all $x \in N$. Therefore N is a nil ideal.

Corollary 3.15 Let $I_1, ..., I_k$ be as in the Theorem 3.14. For any ideal I of N, I and N/I are also nil.

4 Direct Products of Zero-square Nearrings

We observe that the direct product of zero-square nearrings $N_i, 1 \leq i \leq k$ of type-1 is also a zero-square nearring of type-1, but the converse need not be true, in general. We also obtain some important consequences.

If $N_1, N_2, ..., N_k$ are nearrings, then the nearring $N_1 \times N_2 \times ... \times N_k$, the direct product of $N_i, 1 \leq i \leq k$ is denoted by $\prod N_i, 1 \leq i \leq k$. For any nearring N, let us write $N^k = \prod_k N$ for the direct product of k copies of N.

A straightforward verification provides the following.

Theorem 4.1 (i). If $N_i, 1 \leq i \leq k$ are zero-square nearrings of type-1, then $\prod N_i, 1 \leq i \leq k$ is also a zero-square nearring of type-1;

(ii). Each $N_i, 1 \leq i \leq k$ are zero-square nearring of type-2 if and only if $\prod N_i, 1 \leq i \leq k$ is a zero-square nearring of type-2.

Remark 4.2 The converse of the above Lemma 4.1(i) is not true, in general. For this let us observe the following example.

Example 4.3 Write $(N, +) = Z_2$ additive group of integers modulo 2. Consider the zero product on N (that is, $xy = 0$ for all $x, y \in N$). Then N is nearring which is not a zero-square nearring of type-1. Let M be a zero-square nearring of type-1. Consider the nearring $N \times M$ which is the direct product of N and M. Now $N \times M$ is a zero-square nearring of type-1, where as N is not a zero-square nearring of type-1.

Theorem 4.4 Let $N_i, 1 \leq i \leq k$ be nearrings. The direct product $\prod N_i, 1 \leq i \leq k$ is a zero-square nearrings of type-1 if and only if there exists a non-empty subset $I \subseteq \{1, 2, ..., k\}$ such that N_i is a zero-square nearrings of type-1 for all $i \in I$ and N_j is a zero-square nearrings of type-2 but not of type-1 for all $j \in \{1, 2, ..., k\} - I$.
Now (0 \neq x, y) such that \(xy = 0 \) for all \(x, y \in N_j \). Hence \(N_j \) is not a zero-square nearring of type-1, for all \(j \in J \).

Converse: Since \(I \) is non-empty, there exists \(i \in I \) such that \(N_i \) is not a zero-square nearring of type-1. So there exist \(x_i, y_i \in N_i \) with \(x_i y_i \neq 0 \). Now \((0, ..., x_i, ..., 0), (0, ..., y_i, ..., 0) \in \prod N_i, 1 \leq i \leq k \) and the product of these elements is non-zero. By Lemma 4.1, \(\prod N_i, 1 \leq i \leq k \) is a zero-square nearring of type-2. Hence it is a zero-square nearring of type-1.

Corollary 4.5 For any positive integer \(k \), we have that \(N \) is a zero-square nearring of type-2 (respectively, type-1) if and only if \(N^k \) is a zero-square nearring of type-2 (respectively, type-1).

5 Zero-square Dimension

In this section, we introduce zero-square dimension of type-1/type-2. We consider a class of nearrings \(N \) and obtained some relations between the concepts dimension of \(N \), zero-square dimension of type-1/type-2. Finally, we apply this result for the direct sum of nearrings.

Definition 5.1 Let \(N \) has FDI. We define the zero-square dimension of \(N \) (denoted by \(ZSd(N) \)) as follows:

\[
ZSd(N) = \{ s : \text{there exist uniform ideals } U_i, 1 \leq i \leq s \text{ in } N \text{ such that the sum } U_1 + U_2 + \ldots + U_s \text{ is direct and each } U_i \text{ is a zero-square nearring of type-2} \}.
\]

Lemma 5.2 (i) If \(N \) has FDI, and \(N \) is a zero-square nearring of type-2, then \(ZSd(N) = \dim N \).

(ii). If \(N_i, 1 \leq i \leq n \) are nearrings with FDI and each \(N_i \) is a zero-square nearring of type-2, then \(ZSd(\prod_{i=1}^n N_i) = \sum_{i=1}^n ZSd(N_i) \).
Proof: (i) Suppose \(k = \dim N \). Since \(k = \dim N \), there exist uniform ideals \(U_1, U_2, \ldots, U_k \) in \(N \) such that \(U_1 \oplus U_2 \oplus \ldots \oplus U_k \leq e \). Since \(N \) is a zero-square nearring of type-2, by Remark 3.2 (ii), each \(U_i \) is also zero-square nearring of type-2. By definition 5.1, \(ZSd(N) = k \). Hence \(ZSd(N) = \dim N \).

(ii) By Theorem 4.1(ii), \(\prod N_i \) is also a zero-square nearring of type-2. Now \(ZSd(\prod N_i) = \dim(\prod N_i) \) (by (i)) = \(\sum_{i=1}^{n} \dim(N_i) \) (by Theorem 1.4) = \(\sum_{i=1}^{n} ZSd(N_i) \) (by (i)).

Lemma 5.3 Suppose \(N \) has FDI and satisfies the condition \(<xy> = <x><y> \) for all \(x, y \in N \) with \(xy \neq 0 \). If \(N \) is zero-square nearring of type-1, then there exists a uniform ideal \(U \) in \(N \) such that \(U \) itself a zero-square nearring of type-1.

Proof: Since \(N \) has FDI, by Theorem 1.2, \(\dim N = k \), and there exist uniform ideals \(I_1, I_2, \ldots, I_k \) such that \(I_1 \oplus I_2 \oplus \ldots \oplus I_k \leq e \). Write \(E = I_1 \oplus I_2 \oplus \ldots \oplus I_k \). Since \(N \) is a zero-square nearring of type-1, there exist \(x, y \in N \) with \(xy \neq 0 \). Since \(0 \neq xy \in <xy> \), and \(E \leq e \), we have that \(<xy> \cap E \neq 0 \). Now \(<x><y> \cap E \neq 0 \). This implies there exists \(x^1 \in <x>, y^1 \in <y> \) such that \(0 \neq x^1y^1 \in E \). So \(E = I_1 \oplus I_2 \oplus \ldots \oplus I_k \) is a zero-square nearring of type-1. By Theorem 4.4, there exists \(t \in \{1, 2, \ldots, k\} \) such that \(I_t \) is a zero-square nearring of type-1.

Definition 5.4 Let \(N \) has FDI and \(\dim N = k \). If \(N \) contains no uniform ideal which is a zero-square nearring of type-1, then we define the zero-square-1 dimension of \(N \) (denoted by \(ZS1d(N) \)) is equal to zero. We write \(ZS1d(N) = 0 \). If \(N \) contains a uniform ideal which is a zero-square nearring of type-1, then we define the zero-square-1 dimension of \(N \) as follows:

\[
ZS1d(N) = \max\{t : U_1, U_2, \ldots, U_t, U_{t+1}, \ldots, U_k \text{ are uniform ideals of } N, \text{ whose sum is direct and essential in } N \text{ (that is, } U_1 \oplus U_2 \oplus \ldots \oplus U_k \leq e \text{)}, U_1, U_2, \ldots, U_t \text{ are zero-square nearrings of type-1, } U_{t+1}, \ldots, U_k \text{ are not zero-square nearrings of type-1}\}.
\]

Note 5.5 (i) If \(N \) has FDI, \(N \) is a zero-square nearring of type-1 and satisfies the condition \(<xy> = <x><y> \) for all \(x, y \in N \) with \(xy \neq 0 \). By Lemma 5.3, there exist uniform ideals \(U_1, U_2, \ldots, U_k \) in \(N \) whose sum is direct and essential in \(N \). Also at least one of the \(U_i \)'s is a zero-square nearring of type-1. Thus, in this case, \(ZS1d(N) \geq 1 \).

(ii) If \(N \) is a zero-square nearring of type-2 but not of type-1, then there exist no uniform ideal in \(N \) which is a zero-square nearring of type-1. So in this case \(ZS1d(N) = 0 \).

Theorem 5.6 If \(N_1, N_2 \) are nearrings with FDI and \(N = N_1 \oplus N_2 \), the direct sum of nearrings, then \(ZS1d(N_1 \oplus N_2) \geq ZS1d(N_1) + ZS1d(N_2) \).
Proof: Suppose $ZS1d(N_1) = n$ and $ZS1d(N_2) = m$. Then there exists uniform ideals $I_1, I_2, ..., I_k$ of N_1 such that $I_1 \oplus I_2 \oplus ... \oplus I_k \leq_e N_1$, where $I_i, 1 \leq i \leq n$ are zero-square nearrings of type-1. Similarly there exists uniform ideals $J_1, J_2, ..., J_s$ of N_2 such that $J_1 \oplus J_2 \oplus ... \oplus J_s \leq_e N_2$, $1 \leq i \leq m$ are zero-square nearrings of type-1. Since $N = N_1 \oplus N_2$, we have that the ideals of N_1 and the ideals of N_2 are also ideals of N. Now $I_1 \oplus I_2 \oplus ... \oplus I_n \oplus J_1 \oplus J_2 \oplus ... \oplus J_m$ is a sum of $(n + m)$ uniform ideals which are zero-square nearrings of type-1. So by the Definition 5.4, it follows that $ZS1d(N_1 \oplus N_2) = n + m = ZS1d(N_1) + ZS1d(N_2)$.

Corollary 5.7 If $N_i, 1 \leq i \leq k$ are nearrings with FDI, then $ZS1d(N_1 \times N_2 \times ... \times N_k) \geq \Sigma_{i=1}^k ZS1d(N_i)$.

Definition 5.8 Let N be a nearring with FDI. We define $ZS2d(N)$, the zero-square-2 dimension of N as follows:

$$ZS2d(N) = \min \{t : U_1, U_2, ..., U_k \text{ are uniform ideals of } N \text{ such that } U_1 \oplus U_2 \oplus ... \oplus U_k \leq_e N, U_1, U_2, ..., U_t \text{ are zero-square nearrings of type-2 but not of type-1}\}.$$

Note 5.9 Suppose N has FDI, $dim N = k$ and N is a zero-square nearring of type-2 but not of type-1. Then by Note 5.5, $ZS1d(N) = 0$. Since every representation $E = U_1 \oplus U_2 \oplus ... \oplus U_k$ that is equal to a direct sum of uniform ideals with $E \leq_e N$, contains exactly k uniform ideals, we have that $ZS2d(N) = k$. So in this case, $ZS1d(N) = 0$ and $ZS2d(N) = dim N$.

Theorem 5.10 (i) If N has FDI and N is a zero-square nearring of type-1, then $dim(N) = ZSd(N) = ZS1d(N) + ZS2d(N)$.

(ii) If $N_i, 1 \leq i \leq k$ are nearrings with FDI, and also zero-square nearrings of type-1, then $dim(N_1 \times N_2 \times ... \times N_k) = ZSd(N_1 \times N_2 \times ... \times N_k) \geq \Sigma_{i=1}^k ZS1d(N_i) + \Sigma_{i=1}^k ZS2d(N_i)$.

Proof: (i) By Lemma 5.2(i), $dim(N) = ZSd(N)$. Suppose $dim(N) = k$ and $ZS1d(N) = n$. Then there exist uniform ideals $I_1, I_2, ..., I_k$ in N such that $I_1 \oplus I_2 \oplus ... \oplus I_k \leq_e N$ and $I_i, 1 \leq i \leq n$ are zero-square nearrings of type-1, n is maximum among such n. Also $I_{n+1}, ..., I_k$ are uniform ideals of $N(k - n$ in number) which are zero-square nearrings of type-2 (but not of type-1).

So $ZS2d(N) \leq k - n$. Suppose $m = ZS2d(N)$. Then there exist uniform ideals $U_1, U_2, ..., U_k$ in N such that $U_1 \oplus U_2 \oplus ... \oplus U_k \leq_e N, U_i, 1 \leq i \leq m$ are zero-square-nearrings of type-2 (but not type-1) and m is the minimum among these numbers. This means that the remaining $k - m$ uniform ideals $U_{m+1}, ..., U_k$ are zero-square nearrings of type-1 (we get this because of the hypothesis that N is a zero-square nearring of type-2). By the Definition
5.4, we conclude that \(k - m \leq n \), which imply that \(m \geq k - n \). Hence\[ZS2d(N) = m = k - n = \text{dim}N - ZS1d(N). \] Finally we get that \(\text{dim}N = ZSd(N) = ZS1d(N) + ZS2d(N) \).

Proof for (ii) follows by using (i) and mathematical induction.

Corollary 5.11 (i) If \(N_1, N_2 \) are zero-square nearrings of type-2 with FDI, then \(ZS2d(N_1 \oplus N_2) \leq ZS2d(N_1) + ZS2d(N_2) \).

(ii) If \(N_i, 1 \leq i \leq k \) are zero-square nearrings with FDI, then \(ZS2d(N_1 \oplus N_2 \oplus ... \oplus N_k) \leq \sum_{i=1}^{k} ZS2d(N_i) \).

Proof: (i) \(ZS1d(N_1 \oplus N_2) + ZS2d(N_1 \oplus N_2) = ZSd(N_1 \oplus N_2) \) (by Theorem 5.10) = \(ZSd(N_1) + ZSd(N_2) \) (by Lemma 5.2(ii)) = \(ZS1d(N_1) + ZS2d(N_1) + ZS1d(N_2) + ZS2d(N_2) \) (by Theorem 5.10) \(\leq ZS1d(N_1 \oplus N_2) + ZS2d(N_1) + ZS2d(N_2) \). Therefore \(ZS2d(N_1 \oplus N_2) \leq ZS2d(N_1) + ZS2d(N_2) \).

Proof for (ii) follows by using (i) and mathematical induction.

An Application: We give an application to graph theory by considering a graph of \(N \) denoted by \(G_N = (V, E) \) defined as \(V = N \) and \(E = \{ab : a, b \in N, a \neq b, a \cdot b = 0\} \). For instance, consider \(S = \{0, 1\} \), the nearring of integers modulo 2. Write \(N = S \times S \times S \). Define addition and multiplication defined as in example 2.2. Note that a graph is said to be complete if there exists exactly one edge between any two vertices. Take the set of vertices \(V = \{A = (0, 0, 0), B = (0, 0, 1), C = (0, 1, 0), D = (0, 1, 1), E = (1, 0, 0), F = (1, 0, 1), G = (1, 1, 0), H = (1, 1, 1)\} \). It is clear that there are no edges between \(F \) and \(G \); \(E \) and \(D \); \(D \) and \(H \). Therefore it is not a complete graph. Further, since \(F \neq 0 \) and \(G \neq 0 \), there is no edge between \(F \) and \(G \). Similarly, there are no edges between \(E \) and \(D \); \(D \) and \(H \) etc. This means that the graph cannot be a complete graph. In general, a zero-square nearring \(N \) of type 2 is a zero-square nearring of type 1 if and only if its related graph is not complete.

Acknowledgement: A part of the paper was initiated and done by the first and second authors at Walter Sisulu University (WSU), Umtata, South Africa during a visit of the first author to WSU as a Visiting Professor in 2007. The first author thanks Prof. S. N. Mishra and Dr. S. N. Singh for their hospitality during his stay at WSU, and acknowledge the UGC, New Delhi for the grant F. No. 34-136/2008 (SR) dt. 30th Dec 2008.

References

Received: March, 2010