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On the existence of solution of boundary value problems 5

Introduction

Theory of operator-differential equations in abstract spaces that takes its
origin in the papers of K. Yosida, E. Hille and R. Fillips, T. Kato and others,
appeared as application of the methods of functional analysis in the theory of
partial differential equations.

Interest to this problem is stipulated by the fact that it allows to investigate
both systems of ordinary differential equations, integro-differential equations,
quasidifferential equations and others from a unique point of view. It should
be noted that the questions on solvability of operator-differential equations
and boundary value problems for them are of independent scientific interest.
Some significant results of the theory of operator- differential equation are
cited in the books of S.G. Krein, A.A. Dezin, J.L. Lions and E. Majenes, V.I.
Gorbachuk and M.L. Gorbachuk, S.A. Yakubov and others.

Interest to the investigations of solvability of the Cauchy problem and
boundary value problems for operator-differential equations and also the in-
creased amount of papers devoted to this theme proceed from the fact that
these questions are closely mixed up with the problems of spectral theory of
not selfadjoint operators and operator pencils that at the present time are one
of developing sections of functional analysis. The beginning of devolepment of
these theories is the known paper of the academician M.V. Keldysh. In this
paper M.V. Keldysh introduced the notion of multiple completeness of eigen
and adjoint vectors for a wide class of operator bundless, and also showed how
the notion of n-fold completeness of eigen and adjoint vectors of operator pen-
cil is associated with appropriate Cauchy problem. After this, there appears
a great deal of papers in which significant theorems on multiple completeness,
on busicity of a system of eigen and adjoint vectors and on multiple expansion
in this system were obtained for different classes of operator bundless. Many
problems of mechanics and mathematical physics are related to investigations
of completeness of some part of eigen and adjoint vectors of operator pen-
cils. A great deal of papers was devoted to these problems. There are some

methods for solving these problems and one of them is the consideration of
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appropriate boundary value problems on semi-axis, that arises while investi-
gating completeness of eigen and adjoint vectors responding to eigen values
from the left half-plane. This method was suggested by academican M.G.
Gasymov. He showed relation of completeness of a part of eigen and adjoint
vectors and solvability a boundary value problem on a semi-axis with some
analytic properties of a resolvent of an operator pencil, that was developed in
the S.S. Mirzoevs paper.

The suggested book is devoted to similar questions of solvability of operator-
differential equations of higher order and boundary value problems for them, to
investigation of spectral properties of appropriate operator pencils. A theorem
of Phragmen-Lindeloff type in some vector is proved. The principal part of

the investigated operator-differential equations have multiple characteristics.
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Chapter I

Many problems of mechanics and mathematical physics are connected
with the investigation of solvability of operator differential equations. As an
example, we can show the following papers.

As is known, stress-strain state of a plate may be separated into internal
and external layers [1-4]. Construction of a boundary layer is related with
sequential solution of plane problems of elasticity theory in a semi-strip. In
Papkovich’s paper [5] and in others a boundary value problem of elasticity
theory in a semi-strip = > 0,|y| < 1 is reduced to the definition of Airy

biharmonic functions that is found in the form

where @y are Papkovich functions [5-6], o are corresponding values of a self-
adjoint boundary value problem, (' are unknown coefficients. In this connec-
tion in [6] there is a problem on representation of a pair of functions f; and fo

in the form
> CiPepr = f1, > CrQupr = fo, (1)
k=1 k=1

where Py, Q) are differential operators defined by boundary conditions for
x = 0. In the paper [7,8] some sufficient conditions of convergence of expansion
(1) is given for the cases when the coefficients C} are obviously defined with
the help of generalized orthogonality.

In [9] the coefficients Cy, are uniquely defined by the boundary values of a bi-
harmonic function and its derivatives. The trace problem for a two-dimensional
domain with piecewise smooth boundary was studied in the paper [10]. The
paper [11] deals with differential properties of solutions of general elliptic equa-
tions in the domains with canonical and corner points. Some new results for
a biharmonic equation are in [12]. Investigation of behaviour of solution of
problems of elasticity theory in the vicinity of singular points of the boundary
is in the papers [13-14]. M.B. Orazov [15] and S.S. Mirzoyev [16] studied the

problem when a principal part of the equation is of the form: (—l)mj:gz + A%m
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where A is a self-adjoint operator pencil and it has a multiple characteristics,

that differs it from above-mentioned papers.
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§ 1.1. On generalized solution of a class of

higher order operator—differential equations

In this section the sufficient conditions on the existence and uniqueness
of generalized solution on the axis are obtained for higher order operator -

differential equations the main part of which has the multi characteristic.

1.1. Some definition and auxiliary facts

Let H be a separable Hilbert space, A be a positive — definite self-adjoint
operator in H with domain of definition D (A). Denote by H, a scale of Hilbert
spaces generated by the operator A, ie. H, = D(A7), (y>0), (z,y), =
(A'x, AVy), z,y € D (A7).

We denote by Ly ((a,b); H,) (—oo<a<b<4o00) a Hilbert space of
vector-functions f (¢) determined in (a, b) almost everywhere with values from

H measurable, square integrable in the Bochner’s sense

1/2

b
2
e = | [ 1613

Assume
Ly ((—00,400); H) = Ly (R; H) .
Further, we define a Hilbert space for natural m > 1 [17].
W (@) H) = {u[u™ € Ly (a:b) s H), A™ € Ly ((a,); o)
with norm

1/2
_ (m) 2 m, |2
||uHW2m((a,b);H) - <H“ HLg((a,b);H) +1A UHLz((a,b);H)) :

Here and in sequel the derivatives are understood in the sense of distribu-

tions theory [17]. Here we assume

W3t ((—o0, +00); H) = W3 (R; H) .



10 Rovshan Z. Humbataliyev

We denote by D (R; H)a set of infinitely-differentiable functions with values
in H.

In the space H we consider the operator — differential equation

P (%) u (t) = (—j—; + AQ)mu (t) —}—jZ:;Aju(Qm—j) (t) =f (t) tER= (—OO, +OO) ’
(2)

where f () and u (t) are vector-valued functions from H, and the coefficients
A and A; (j = 0,2m) satisfy the following conditions:

1) A is a positive-definite self-adjoint operator in H ;

2) the operators A; (j = 0,2m) are linear in H.

In the paper we’ll give definition of generalized solution of equation (1) and
prove a theorem on the existence and uniqueness of generalized solution (1).
Notice that another definition of generalized solution of operator - differential
equations and their existence is given in the book [18], in the paper when
m = 2 on the semi-axis Ry = (0, 400) was studied by the author [19].

First of all we consider some facts that we’ll need in future. Denote

P (%) w(t) = (—C;‘l—; +A2)mu(t), w(t) € D (R: H)

and

()0 D AU, i) € DR H).

Now let’s formulate a lemma that shows the conditions on operator coeffi-
cients (1) under which the solution of the equation from the class W3" (R; H)
has sense.

Lemma 1.1. Let conditions 1) and 2) be fulfilled, moreover , B; = A;X
xA™  (j=0,m) and D; = A"™A;A™ (j=m+1,2m) be bounded in
H. Then a bilinear functional L (u,¢) = (P (d/dt)u, ), gy determined
for all vector-functions w € D(R;H) and ¢ € D (R; H) continuous on the
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space Wi (R; H) @ W' (R; H) that acts in the following way

2m
L (U, ¢) = (Pl (d/dt) u, w)Lg(R;H) = Z (Aju(zmij)a w)LQ(R;H) =
7=0
2m ) 2m .
- Z (_1)m (Aj“(m_j)v @Z’m) Lo(R;H) + Z (Ajumm_])’ @Z)) La(R;H) *
j=0 j=m+1

Proof. Let w € D(R; H), v € D (R; H). Then integrating by parts we get

2m

L (u7 ¢) = (Pl (d/dt) u, w)Lg(R;H) = Z (Aju(Qm_j)a w)LQ(R;H) =

j=0

2m

= Z (Ajutm Wﬂ)Lz(RH) + Z (Ajulm ])’w(m))Lz(R;H)' (3)

j= Jj=m+1

On the other hand , for 7 = 0,m we apply the intermediate derivatives

theorem [17] and get

)(Aju(m—J)’ 77Z)(m))L2(R;H)‘ — ‘(Bj,Aj,u(m—J)7 ¢m)L2(R;H)‘ <
<IB- 140D, e 167 L < Conms D31l [y -
(4)
And for j = m + 1,2m we again use the theorem on intermediate deriva-

tives [17] and get

2m—j m m— 2m— m
’(AJ'“( D,ym) LQRH)_’D (A" A w)LgRH)) <
< Dyl [[A™ 5D Ay <
< Com—j D511 - Nl gy 19l wgr sy - (5)

Since the set D (R; H) in dense in the space WJ" (R; H), allowing for in-
equality (4) and (5) in (3) we get that the inequality

1L (u, D) || < const [[ullyym gy - 191w )
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is true for all u,p € WJ" (R; H), i.e. L (u,1) continues by continuity up to a
bilinear functional acting on the spaces W3* (R; H) & WJ" (R; H). We denote
this functional by L (u, ) as well. The lemma is proved.

Definition 1.1. The vector function u (t) € Wi (R; H) is said to be a gener-
alized solution of (1) if for any vector-function 1 (t) € Wi* (R; H) it holds the
identity

2m—1

(u7w)W2m(R;H) + Z Cé“ ATy ) AT ]w )L2 RyH) (fﬂﬂ)@RH (6)
k=1

m(2m— m—k
where Ck = 2m(2 1)k'(2 ),

To find the solvability conditions of equation (2) we prove the following

Lemma by using the method of the paper [16].
Lemma 1.2. For any u (t) € WJ" (R; H) there hold the following estimates

A7 TuD ey < ol Wl ey - (5= 00m) (7)
where
2m—1 , 1/2
el e asory = (Hunéw(m) + D H!Am’“u““’mh(mm) ,
k=1

and the numbers from inequalities (7) are determined as follows

4 omei
oy = { BT T
1, 7=0m

Proof. Obviously, the norm [[|ul|[;,m:m) is equivalent to the norm [[ul]yym g5y
2 2 )
Then it follows from the intermediate derivatives theorem that the final num-

bers

[ sup Ay, (4) Ml =0,
! OyéueWQm(R;H)H HLQ(R,H) H HW2 (R;H)

Show that b; = d//?, j =0, m. Then u (t) € D (R; H).

m,)

For all 5 € [0,b;?), where

b =sup |&/ (€2 +1) " = )7,

£eER
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we use the Plancherel theorem and get

el g ey = BIA™ DN oy = ZC b | AR (O], oy

_ﬁHAmijfja (S)HiQ(RH Z Am k (f) A" kg (é))Lz(R;H)_

B (AMIEUE) AT ) =

“+oo

— [ (@B + 23" = 554 0(©).4(O) sy 6 (8)

—0o0

where @ (€) is a Fourier transformation of the vector-function u (¢). Since for

g € 0, b;Z) it follows from the spectral expansion of the operator A that

+o0
(((§2E + AQ)m _ ﬁ€2jA2(mfj)) x,:l:) — / ((52 +M2)m _ BEQjMQ(mfj)) (dEMx,:I:) —
—7 1— 552] (& + )(dExx)>7(1—ﬁb2)(§2—|— ?) (dE,, x)
- (§2 ) /‘L (] patl 7 /'L (] )
Ko Ho
then equality (7) yields
eall gy > Bl A™ 6|2 (9)

for all 5 € [0, b;Q and u(t) € D(R; H). Passing to the limit as § — bj_2 we get

> d—m/? HAm ]

2
|||u|||W2m(R;H) ])HLQ(R;H)‘

Hence it follows

|47 0y < A Wiy (G =0om) . (10)
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Show that inequalities (10) are exact. To this end, for the given ¢ > 0 we
show the existence of the vector-function u. (t) € W3" (R; H) , such that

2 —m i (12
B (u) = Wl By ey — (o + ) A0 5 <00 (1)

We'll look for w. (t) in the form wu. (t) = g- (t) pc (t), where g. () is a scalar
function from the space W3* (R) and . € Ha,, where ||p.|| = 1. Using the

Plancherel theorem, we write F (u.) in the equivalent form

—+00

E(u) = / (B + A" — (dym +¢) €9A2™2) ., 0.) |g. (6)[ dé.

Note that @ (§) and g. (§) are the Fourier transformations of the vector-
functions u (t) and g. (), respectively.
Notice that if A has even if one even value p, then for . we can choose

appropriate eigen-vector . = ¢ (||¢|| = 1). Indeed, then at the point & =
(j/m)"* -

(&8 +A%)" = (d,7 + ) &A™ ) pe, ) = (& +1°)" =

—m 2§ 2m—2j 2 2\m —m §§ju2m‘2j
—(d,5 +e) & = (& + 1°) 1—(dmﬁj+e)m <0. (12)

If the operator A has no eigen-value, for p € o (A) and for any § > 0 we

can construct a vector gs, ||@s|| = 1, such that
Aps = pmps +0(1,6), § =0, m=1,2,..
In this case, and for & = (j/m)"? u
(B +A4%)" = (d,] +2) &' A" ) 95.05) =

= (& + %) — (d)7 +2) E9p>™ %) +0(1,6).
Thus, for small § > 0 it holds inequality (12). Consequently, for any & > 0
there will be found a vector ¢. (||¢:|| = 1), for which

(B +A)" — (4, +2) &A™ ) pe,p.) <0 (13)
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Now for & = &, we construct g. (¢). Since the left hand side of inequality
(13) is a continuous function from the argument ¢, it is true at some vicinity of
the point &. Assume that inequality (13) holds in the vicinity (1y,72). Then
we construct g (¢)-infinitely-differentiable function of argument ¢ with support

in (11,172) and denote it by

6 (1) = J% / §(€) e
m

It follows from the Paley-Wiener theorem that g. (t) € WJ" (R) and obvi-
ously
E(us) = E (e, ) =

(€54 = (a4 54 )l (O d <,

m

i.e. inequalities (10) are exact. The lemma is proved.

1.2. The basic result

Now let’s prove the main theorem.
Theorem 2.1. Let A be a positive-definite self-adjoint operator in H, the
operators B; = A;- A= (j =0,m) and D; = A" A;A™ (j =m+1,2m)
be bounded in H and it hold the inequality

m 2m
m/2 m/2
y=> 2B+ > Dl <1, (14)
j=0 j=m+1

where the numbers d,, ; are determined from lemma 1.2.

Then equation (2) has a unique generalized solution and the inequality

HUHW;H(R;H) < const HfHLQ(R;H)

holds.
Proof. Show that for v < 1 for all vector-functions ¢» € WJ" (R; H) it holds
the inequality

(P (d/dt)¢7¢)L2(R;H) =
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2m
_ 2 k m—k, (k)||2 2
k=1

where C' > 0 is a constant number.

Obviously,

(P (&t 6, 0) | 2 WO gy = 12 0] (15)

Since

m 2m
‘L (wa w)’ < Z ’(Ajw(mij)a w(m)>L2(R;H)’ + Z ’(Ajw(zmij)aw)Lz(R;H)

7=0 Jj=m+1

Y

then we use lemma 1.2 and get

m 2m
IL (¢, )] < (Z 1B, d> + > 1Dyl dz,/fm_j> 1 g asery =

j7=0 j=m+1

= Y[ llwar ) (16)
Allowing for inequality (16) in (15) , we get
(P (d/dt) ¥, ) 1y mry| = (1= 1) N0l ey - (17)
Further, we consider the problem
Bo(d/dt)u(t) = f(t),

where f(t) € Lo(R; H). It is easy to see that the vector - function

+oo +oo
w(t) =5 [ (& 2" [ s Oasag (18)

belongs to the space WJ" (R; H) and satisfies the condition

(Uo,w) = (faw) :
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Now we’ll look for the generalized solution of equation (1) in the form
u = ug + &, where & € Wi" (R; H). Putting this expression into equality (5),

we get

(P (d/dt)u, ), gy = =L (w0, ), ¢ € W' (R H). (19)

The right hand-side is a continuous functional in W3 (R; H), the left hand-
side satisfies Lax-Milgram [20] theorem’s conditions by inequality (17). There-
fore, there exists a unique vector - function u (t) € Wi (R; H) satisfying equal-
ity (19). On the other hand , for ¢ = w it follows from inequality (17) that

2 2
(P (d/dt)u’u>L2(R;H)’ = ’(fa U)LQ(R;H)’ =>C |||u|||W2m(R;H) =>C Hu||W2m(R;H)7

then hence it follows

H“HW;H(R;H) < const HfHLg(R;H) :

The theorem is proved.
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§ 1.2. On the existence of solutions of bound-
ary value problems for a class of higher order

operator-differential equations

In this section we give the sufficient conditions on the existence and unique-
ness of generalized solutions of boundary value problems of one class of higher
order operator-differential equations at which the equation describes the pro-
cess of corrosive fracture of metals in aggressive media and the principal part

of the equation has a multiple characteristic.

2.1. Problem statement

Let H be a separable Hilbert space, A be a positive definite self-adjoint
operator in H with domain of definition D(A). By H., we denote a scale of
Hilbert spaces generated by the operator A, ie. H, = D(AY), (y > 0),
(,9)y = = (A2, Ay) ,x,y € D(AY). By Ly ((a,b); H) (—o0 < a <b < o0)
we denote a Hilbert space of vector-functions f(t), determined in (a, b) almost
everywhere with values in H, measurable, square integrable in Bochner sense

1/2

b
2
e = | [ 1612

Then we determine a Hilbert space for natural m > 1 [17]
W3 ((a,b); H) = {u/u™ € Ly ((a,b); H), A™u € Ly ((a,b); Hy)}
with norm

m) |2 m, |12 /
lelhwgrasran = (1 1y + 1A™ 00 s atry)

Here and in sequel, derivatives are understood in the distributions theory

sense [17]. Assume

Ly ((0,00); H) = Lo(Ry; H), Lo ((—00,00); H) = Lo(R; H),

Wy ((0,00); H) = Wi (Ry3 H) , Wi (=00, +o0): H) = Wy' (R; H).
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Then we determine the spaces

W3 (Rys H; {w}) = {ulu € W3 (Ry; H) ,u(0) = 0, v =0,m — 1},

Obviously, by the trace theorem [17] the space W3" (Ry; H;{v}]=)) is a
closed subspace of the Hilbert space W3" (R.; H) .

Let’s define a space of D ([a, b]; H,)-times infinitely differentiable functions
for a <t < b with values in H., having a compact support in [a, b]. As is known
a linear set D ([a, b]; H,) is everywhere dense in the space W3" ((a,b); H), [17].

It follows from the trace theorem that the space
D (Ry; Hpy {v})5y) = {ulu € D (Ry; Hy,) u(0) =0, v="0,m — 1}

and also everywhere is dense in the space.

In the Hilbert space H we consider the boundary value problem

d? " S -
(< +42) w0+ X Aum D) =0, e R =(0.400). ()
j=1

u(l/)(()) =¢, v=0,m—1, ¢, € Hy_p_1). (21)

Here we assume that the following conditions are fulfilled:
1) A is a positive-definite self-adjoint operator with completely continuous
inverse C' = A~ € 0;

2) The operators

Bj = AT PAATI? (j =2k, k=T1m)
and
B, = A—(j—l)/2AjA—(j—1)/2 (j =2k—-1,k=1m-— 1) ;

3) The operators (B + E,;,) are bounded in H.
Equation (20) descries a process of corrosion fracture in aggressive media

that was studied in the paper [21].
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2.2. Some definition and auxiliary facts

Denote

jo (i> u(t) = (—d—2 + A2>mu(t), u(t) € D(Ry; Hy) (22)

P (%) u(t) = Y Au™D(0), ult) € D (R ), (23)

j=1
Lemma 2.1. Let A be a positive-definite self-adjoint operator, the opera-
tors B; = AT1/2A;A79/2 (j =2k, k=1 m) and B; = A-U=D/24,A-0U-D/2
(] =2k—1,k=1m— ) be bounded in H. Then a bilinear functional

Py(u, 1) = (Pi(d/dt)u, 77Z))L2(R+;H)

determined for all vector-functionsu € D (Ry; Hy,) and ) € D (R Hyy; {v
continues by continuity on the space W3" (Ry; H) ® W3 (Ry; Hy {v}'5") up

to bilinear functional Py(u,) acting in the following way

Pilu) = S (—1)779/2 (Agulm=d/2) gom=if?y

2
(7=2k)

_ +1)/2 1)/2) ) (m=(i=1)/2)
+ > (=TI (A G ytem GO (24)
j=(2k—1)
Here in the first term, the summation is taken over even j, in the second
term over odd j.
Proof. Let u € D(Ry; Hy), ¥ € D (Ry; Hy; {v})5)) . After integration

by parts we have

P (u, ), = (Pi(d/dt)u zm: A; w9 4 L=
7=0

- Z (—1)972 (Agum=3/2) m=i/2)

2
(5=2k)

+ 30— (AU =G0/
j=(2k-1)

Ly

m—l)
v=0
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Since

Pi(u,p) = Z (_1)m—j/2 (Bjjglj/?u(m—jﬂ)7Aj/?qﬁ(m—j/?))];2 +
(7=2k)

+ Z —(j+1)/2 (BA qu(m=0U— 1)/2) (J'*l)/2¢(m*(j*1)/2))
Jj=(2k-1)

Ly’

from belongless of u € D (Ry; Hy,) and ¢ € D (R.; Hy; {v}/)') by interme-

diate derivatives theorem [17] it follows that

|P1(u7 ()0)| S Z ||B]|| HAj/zu(m*j/Q)

(5=2k)

I, (147202, +

+ Z HB I HAJ+1)/2 (m—(j-1)/2) HL HAJ 1)/2¢(m (j—1)/2) HL
J=(2k-1) 2 2

< const ||U||W;1(R+;H) ||77Z)HW27”(R+;H) )

i.e. Pi(u, ) is continuous in the space D(Ry; Hy,)®D (Ry; Hy; {v})2)') there-
fore it continues by continuity on the space W3"(R.y; H)dW3" (R H; {v})=)) .
The lemma is proved.

Definition 2.1. The vector-function u(t) € W3*(Ry; H) is said to be a gener-
alized solution of (20), (21), if
hmHu”) gp,,HH =0, v=0m-—1

t—0 m—v—1/2

and for any ¥(t) € W3 (Ry; H; {v}]5)') it is fulfilled the identity

m—1
<u7 77Z)> = (u7 77Z))W2m(112-~-;111) + Z 0717)1 (Apu(m—p)7 quvz)(m_p))LQ(RJr;H) + Pl (U, ¢) - O)

p=1

where
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First of all we consider the problem

Py (%) u(t) = (—j—; + AQ)mu(t) =0, te R, = (0,+00), (25)

u(0) =, v=0,m— 1L (26)

It holds
Theorem 2.1. For any collection o, € Hy_y—15 (v =0,m — 1) problem (25),
(26) has a unique generalized solution.

Proof. Let ¢y, ¢1, ... o1 € Hyp—p—1)2 (1/ = m) , e 4" be a holomor-
phic semi-group of bounded operators generated by the operator (—A). Then

the vector-function
m—1

t
Uo(t) = e_tA (CO —+ iAcl + ...+ 'Am_lcm_l)

(m—1)
belongs to the space WJ"(R,; H). Really, using spectral expansion of the

operator A we see that each term
tm—u
A" Ve e WI(Ry H) for ¢, € H,,_ v=0m-—1).
(m —v)! 2" (R H) 1/2 ( )
Then it is easily verified that ug(t) is a generalized solution of equation
(25), i.e. it satisfies the relation

m—1

(0. 2wy + 3 Ch (A7 Pu) A7 PG) = 0

p=1
for any o € Wi" (Ry; H; {v})2') .

Show that u™)(0) = ¢,, v =0, m — 1.For this purpose we must determine
the vectors ¢, (v =0,m—1) from condition (26). Obviously, in order to
determine the vectors ¢, (v =0,m — 1) from condition (26) we get a system

of equations with respect to the vectors

E 0 e 0
—F E 0
E —-F
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Co %0
C1 Al
X C = A2, ) (27)
Cm—1 A_(m_l)gpmfl
where £ is a unique operator in H and < b > = CP _,. Since the prin-
m—s

cipal determinant of the operator is invertible, we can uniquely determine
Cy (l/ =0,m— 1). Obviously, for any v the vector A=y, € Hy 19,
since ¢, € Hy,—,—1/2. As the vector at the right hand side of the equation (27)

belongs to the space

Hop1/2® oo © Hpo1p = (Hp12)™

-~

m times

then taking into account the fact that the principal operator matrix E as a
product of the invertible scalar matrix by matrix where Eisa unique matrix
in (Hm,l /g)m, then it is unique. Therefore, each vector ¢, (1/ = m) is
a linear combination of elements A=, € H,,_, /2, that is why the vector
Cy (1/ = m) is determined uniquely and belongs to the space H,,_y/s.
The theorem is proved.

In the space W3 (R+; H;{v ;":—01) we define a new norm

m—1 1/2
2 m— 2
H\uruwm;m:(\ruuw(wa%HA pu<p’HL2<R+;H>> :

p=1
By the intermediate derivatives theorem [17] the norms |||u] ngn( R,y and
[ullyyp (g, 71y are equivalent in the space W3" (Ry; H; {v}=)') . Therefore, the
numbers
N (R {vh5y) =

i (i 1 .
= sup A j“(J)HLz(R+;H) H|u|”W£”(R+%H)’ J=0,m.
0ueWg (R Hi{w}y')

are finite.

The next lemma enables to find exact values of these numbers.
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Lemma 2.2. The numbers N; (R.;{v}]'=)') are determined as follows:

Ny (R ) = d?

m7] ’

where

m—j

dmyj:{ (L)% (=), =TT

—_

; J=0m

Using the method of the papers [16, 22] the lemma is easily proved.

2.3. The basic results

Now, let’s prove the principal theorems.
Theorem 2.2. Let A be a positive-definite self-adjoint operator, the opera-
tors B; = A*j/QAjA*j/2 (j =2k, k= O,—m) and B; = A*(J'*l)/%éljfl*(f'*l)/2
(j =2k—1k= m) be bounded in H and it hold the inequality

a0 =GByl <1

j=1
where
o d%?ﬂ, j=2k k=0,m
= m/2 . S

’ (dm,(jfl)/2dm,(j+1)/2) / , J=2k—-1k=1m—1

and
4, mej
b { @F e T
! 1 , J=0m

Then for any ¢, € D (A™""Y2) (v =0,m — 1) problem (20), (21) has a

unique generalized solution and it holds the inequality

m—1

Hu||W2m(R+;H) < const Z ||90||m—u—1/2‘
v=0

Proof. Let ¢ € D (Ry; H; {v}]'2)') . Then for any 1

Re P(i,9) = Re By(¢,¢) + Re Pi(¢,¢) =
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(£

2

+ Re P\(1 H <__ +A> | Re Pi(t,0)] >

2]

Since by lemma 2.2

— 1P () Ly ry

Ly(Ry;H)

HAkw(mik)HLQ(R+§H) < dsz—k el cry o

then

m/2 m/2 m/2
< S Bl S B adin | -
(7=2k) (j=2k—1)

Here dooy = dpym = 1 and

thus
[P, )] <yl Bl
j=1
where
m/2 . e
o de/Q, 1 =2k, k=0,m
PN (a2 ™ ok k=T =T
m,(+1)/2%m,(j-1)/2 ) Z ek = L= LM L
Consequently
2
‘pl(w>¢)‘ Sa H¢HW£”(R+,H) :
Then

Re P(V, V) 1o(r sy = (1 — ) Po(Y,¢) Ly(ry 1) (28)



26 Rovshan Z. Humbataliyev

Now we look for a generalized solution of problem (20), (21) in the form
u(t) = uo(t) +0(t),

where wug(t) is a generalized solution of problem (25), (26) and 6(t) €
€ W3 (R H; {v}]5)') . To define 6(t) we get relation

m—1
<0; 77Z)> = (9, 77Z))I/V2m(R+;H) + Z Cfn (Am—pe’ Am—p¢) + Pl (‘9’ ¢) - Pl(u07¢)'

p=1

(29)

Since the right hand side of the equality is a continuous functional in
Wi (Ry; H; {v}=)') , and the left hand side (f;¢) is a bilinear functional
in the space W3" (R+;H; {v T;Ol) o Wi (R+;H; {v ,T/”:’Ol), then by inequal-
ity (28) it satisfies conditions of Lax-Milgram theorem [21]. Consequently,
there exists a unique vector-function (t) € Wj" (R4; H; {v}/5') that satisfies
equality (29) and u(t) = ug(t) + 6(t) is a generalized solution of problem (20),
(21).

Further, by J(R,; H) we denote a set of generalized solutions of problem
(20), (21) and define the operator I' : J(Ry; H) — H = zGE:Hm_k_l/g acting in

the following way I'u = (u(k)(O))Zzol . Obviously J(R,; H) is a closed set and
by the trace theorem |[l'ul|z < C Hu||W2m(R+;H) . Then by the Banach theorem

on the inverse operator there exists the inverse operator I' ! : H—J (R H).

Consequently
m—1
|||u|HW2m(R+;H) < const Z ||90||m—k:—1/2‘
k=0
The theorem is proved.
Remark. From the proof we can show that for m = 2, ¢ = ¢3 = 1/2,

Coy = ]_/4, Cqy = 1.
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§ 1.3. On completeness of elementary general-
ized solutions of a class of operator-differential

equations of higher order

In this section we give definition of m- fold completeness and prove a
theorem on completeness of elementary generalized solution of correspond-
ing boundary value problems at which the equation describes the process of
corrosive fracture of metals in aggressive media and the principal part of the

equation has a multiple characteristic.

3.1. Problem statement

Let H be a separable Hilbert space, A be a positive definite self-adjoint
operator in H with domain of definition D(A). By H., we denote a scale of
Hilbert spaces generated by the operator A, ie. H, = D(AY), (y > 0),
(,9)y = = (A2, Ay) ,x,y € D(AY). By Ly ((a,b); H) (—00 < a <b < o0)
we denote a Hilbert space of vector-functions f(t), determined in (a, b) almost
everywhere with values in H, measurable, square integrable in Bochner sense

1/2

b
2
e = | [ 1912

Then we determine a Hilbert space for natural m > 1 [17]
W3 ((a,b); H) = {u/u'™ € Ly ((a,b); H), A™u € Ly ((a,b); Hy)}
with norm

m)||? m, |12 /
HuHWQm((a,b);H) = <HU( )HLQ((a,b);H) + HA UHL2((aab)§H)) ’

Here and in sequel, derivatives are understood in the distributions theory

sense [17]. Assume

Ly ((0,00); H) = Lo(Ry; H), Lo ((—00,00); H) = Lo(R; H),
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W3 ((0,00); H) = Wy (Ry; H) , Wy ((—o0, +00); H) = W3 (R; H).
Then we determine the spaces

WQm (R+;H; {l/ T:7)1> = {u’u < WQm (R+7H> ’u(u)(()) = 07 V= O7m - 1} :

Obviously, by the trace theorem [17] the space W3" (R+; H;{v Z‘:_Ol) is a
closed subspace of the Hilbert space W3* (Ry; H).

Let’s define a space of D ([a, b]; H,)-times infinitely differentiable functions
for a <t < b with values in H., having a compact support in [a, b]. As is known
a linear set D ([a, b]; H,) is everywhere dense in the space W3" ((a,b); H), [17].

It follows from the trace theorem that the space
D (Ry; Hyy {v}r)) = {ulu € D(Ry; Hy) ,u(0) =0, v =0,m — 1}

and also everywhere is dense in the space.

Let’s consider a polynomial operator pencil
P(\) = (-NE+ A"+ Aam, (30)
j=1
Bind the polynomial pencil (30) with the following boundary value problem

2 m m
7=1

u(”)(O) =@, v=0,m—1, ¢, € Hy_p_1. (32)

Here we assume that the following conditions are fulfilled:
1) A is a positive-definite self-adjoint operator with completely continuous
inverse C' = A7 € o;

2) The operators

Bj — A—j/QAjA—j/Q (] - 2]{;’ k= 17m)
and
Bj=AUDRAA D2 (j=2k—1, k=T,m—1);
3) The operators (B + E,,) are bounded in H.

Equation (31) descries a process of corrosion fracture in aggressive media

that was studied in the paper [21].
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3.2. Some definition and auxiliary facts

Denote

ja (E) u(t) = (—@ + A2>mu(t), u(t) € D(Ry; Hy) (33)

P, (%) u(t) = JZ_I Aju(mfj)(t), u(t) € D(Ry; Hpy,), (34)

Definition 3.1. The vector-function u(t) € Wi*(Ry; H) is said to be a
generalized solution of (31), (32), if

lim [|[u™)(t) — @, ]|, =0, v=0,m—1

t—0 m—v—1/2
and for any ¥(t) € W3 (R+; H;{v T:_Ol) it is fulfilled the identity

m—1

(u, ) = (v, ¥)wyp(ry ) + Z cr (Apu(m—p)’ pr(m—p)>L2(R+;H) + Py(u, 1) = 0,

p=1

where

2 D

C%:m(m—l)...(m—p+1): (m)

Definition 3.2. If a non-zero vector pg # 0 is a solution of the equation
P(Xo)po = 0 then A is said to be an eigen-value of the pencil P(\) and ¢y an
ergen-vector responding to the number .

Definition 3.3. The system {@1, ©2, ..., om} € Hp, is said to be a chain of

eigen and adjoint vectors ¢q if it satisfies the following equations

1 d
- - P(A\)|a=x, ° - = O, = ]_, m.
;/LdAZ ( )|>\7)\0 80(1 q
Definition 3.4. Let {¢g, ¢1, .., pm } be a chain of eigen and adjoint vectors
responding to eigenvalues \g, then vector-functions
th th_l

@, (t) = ! (m@o + m@l + ...+ SOn) , h=0,m
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satisfy equation (31) and are said to be its elementary solutions responding to

the ergen value Ag.

Obviously, elementary solutions ¢y, (t) have traces in the zero

y S
@2) = @@h’t:(], V= O,m — 1.

By means of goé”) we define the vectors

o= (o el), h=OmpcHm =4 H
{SOh <<Ph,<ph , ,m e C X ... x H.

m times

Later by K(II_) we denote all possible vectors ¢, responding to all eigen
values from the left half-plane (II_- = {A\/Re A < 0}).

Definition 3.5. The system K(I1_) is said to be m-fold complete in the
trace space, if the system K(I1_) is complete in the space §on4,1/2.

It holds

Lemma 3.1. Let conditions 1)-2) be fulfilled and

0= 3G Bl < 1, (3)
j=1
where
m/2 . .
C; = Dy i /20 J =2k k B 0,m
(dm.G-vys2dm yryy2) " G =2k =1L k=T,m—1
and
gl G, i=Tm—1
! 1 Y j - Ovm

Then for any b € Wi" (R+; H,;{v ;":_01) it holds the inequality

Re P(¢7¢) Z (]- - Q)PO(¢7¢)7

where
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and

P(U,@Z)) = Po(u,iﬁ) + Pl(uﬂvz))

moreover Py(u,) is determined from lemma 2.1.
Proof. Let ¢ € D (Ry; Hy; {v}5') . Then for any ¢

Re P(i,9) = Re By(¢,¢) + Re Pi(¢,¢) =

d o \" d o \"
Z((WA) () ),

2

© Re Py H(——+A) o = 1P, ).
Lo
Since
HAkl/)(m_k)HLg < dﬁ,/ifk [l [yype
then

|Pr(v,4)] <

m/2 m/2 m/2
<\ S B ST B di e | e
(J=2k) (j=2k-1)

Here doo = dpym = 1, thus

1P, 0)] < [Bissll €,

7=0

where

o /%, j=2k k=0m
! (dm,(j+1)/2dm7(j—1)/2)m/27 j = Qk - 1, k = 1,m - 1

Thus
\P1(¢>¢)L2’ <« "w"?/l/g”(R+,H) :

Thus

P, V) oy sy = (1 — @) Po(V,0) o(ry 1)
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The lemma is proved.
Lemma 3.2. Let the conditions of lemma 2 be fulfilled. Then for any
x € H,, and £ € R it holds the inequality

(PEX, X) > (1 = a) (F(i6) X, X)

Proof. It follows from the conditions that for all 1 (¢) € W3" (Ry; H; {v}=)
it holds the inequality

(P(¢>¢))L2(R+;H) > (1= a)Ro(¥, ¥) La(rysm)- (36)

Let ¢(t) = g(t)-X, X € H,, and a scalar function g(t) € Wi" (Ry; H; {v}]')) .
Then from (7)we get

(P(i€)g(t) - X, g(t) - X)LQ(R+;H) > (1 —a) (P(i€) - X, X) Hg(t)HiQ(RJr;H) )

then

(PUEX, X) 9(0)2, oty = (L= ) (Bli)X, X) 9O
(P()X, X) > (1 - ) (By(i€)X, X)

The lemma is proved.

Lemma 3.3. Let conditions 1)-3) and solvability conditions be fulfilled,
then estimation ||A™p~1(i&) A™|| < const is true.

The proof of this lemma is easily obtained from Keldysh lemma [23,24] and

lemma 3.1.

3.4. The basic result

Now, let’s prove the principal theorems. It holds the following theorem.

Theorem 3.1. Let conditions 1)-2) be fulfilled, solvability conditions and
one of the following conditions hold

a) At €, (0<p<1);
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b) At €0, (0<p<o0) and Bj € 0n.
Then the system of eigen and adjoint vectors from K(I1_) is complete in
the trace space.

Proof. Denote

where
L) = (=XC* + B)™ + > Am=iTd,
j=1

and

_— Cm12B,ComY2 for =2k, k=1,m
J (jmf(jfl)ﬂgj(jmf(j*l)/? for j=2k—1,k=1,m— 1.

Obviously T} € 0p/—;. Then L7'(X) is represented in the form of relation

of two entire functions of order p and minimal order p. Then
Am71/2p71()\)Am71/2 _ A71/2 (Ampfl()\>Am) A71/2

is also represented in the relation of two entire functions of order p and of
minimal type for order p. The proof of m-fold completeness of the system
K(I1_) is equivalent to the proof of the fact that for any ¢, @1, ..., @1 from

holomorphic property of the vector-function

~—1

F) = (L) (fO), F )

where

3

F) = NCTH2y,

J

Il
=)

For II_ = {\/ Re A < 0} it follows that ¢, = 0.
The theorem is proved.
Now we use theorem 2.2 and theorem 3.1 and prove the completeness of

elementary solutions of problem (32), (33).
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Theorem 3.2. Let the conditions of theorem 2.2 be fulfilled. Then ele-
mentary solutions of problem (32), (33) is complete in the space of generalized
solutions.

Proof. It is easy to see that if there exists a generalized solution, then

m—1

||u||W2m(R+;H) < const Z HQOmequ/z'
=0

Then it follows from the trace theorem [17] and these inequalities that

m—1 m—1
C Z H(IOVHmfl/fl/Z < ||u||W2m(R+;H) = Ck Z H(IOVHmfllfl/Z' (37)
v=0 v=0

Further, from the theorem on the completeness of the system K (IT_) it
follows that for any collection {cp,,}T:_ol and ¢, € H,_,_1/2 there is such a

number N and Cy(e, N) that

N
o= Crpih
k=1

Then it follows from (37) that

<e/m, v=0m-—1.

N
u(t) = > G,

k=1

<e.

The theorem is proved.
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Chapter 11

In this chapter we’ll give definition of regular holomorphic solutions of
boundary value problems and prove theorems on existence and uniqueness
of solutions in terms of coefficients of the studied higher order operator—
differential equations. In addition we’ll investigate ¢-solvability of boundary
value problems in a sector.

Further we prove theorem on m- fold completeness of a part of eigen and
adjoint vectors for high order operator pencils responding to eigen- values from
some angular sector, moreover a principal part of polynomial pencils has a
multiple characteristics. Therewith we’ll use main methods of M.G.Gasymov
[1] and S.S.Mirzoyev [2,3] papers. We'll prove a Phragmen- Lindelof type

theorem.
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§2.1. On regular holomorphic solution of a boundary value prob-

lem for a class of operator- differential equations of higher order

In this section we give definition of regular holomorfic solutions of a bound-
ary value problem and determine the conditions under which these solutions
exists.

1.1. Introduction and problem statement.

Let H be a separable Hilbert space, A be a positive-definite self- adjoint
operator in H, and H, be a scale of Hilbert spaces generated by the operator
A,ie. Hy=D(A), (v,y), = (Az, AMy), v,y € D (A7).

In the space H we consider an operator—differential equation
d
Pl—)u(r)=
(dT) (7)
d2

2m—1
= (_ﬁ + AQ) u ( Z Agp_juD (1) = f (1), T € Sa (38)
with boundary conditions

u (0)=0, v=0,m—1, (39)

where u (1) and f (7) are holomorphic in the angle

Sa ={N|arg\| < o, 0 < a < 7/2}

and are vector- functions with values in H, the derivatives are understood in
the sense of complex analysis [4].
We denote

A linear set Hy («) turns into Hilbert space if we determine the norm

X 1/2
Il =75 (”fa (i g 1o (T)HL§<R+;H>>
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where f, (1) = f(te"), f_o(T) = f(te7**)are the boundary values of the
vector- function f (7) almost everywhere on the rays I'r, = {\/arg A = +a},
and the space Ly (R4 ; H) is determined in [4]. Further we define the following
Hilbert spaces

W5™ (o) = {u(r ) Ju®™ (1) € Hy (o), AP (1) € Hy ()}

ng ={u(r) e Wy (a), u"(0)=0, v=0,m—1}
with the norm
1/2
Il = (a1 + [ 4212

Definition 2.1. If vector-function u (1) € W3™ («) satisfies the equation (38)
in Sy identically, it said to be a reqular holomorphic solution of equation (38).
Definition 2.2. If reqular solution of equation (38) u (T) satisfies the boundary

values 1n the sense

hmHu(” =0, v=0m-—1

70 H2m71/71/2
and the inequality

[ulll, < const||fll,

is fulfilled, we’ll say that the problem (38), (39) is regularly holomorpically

solvable.
1.2. Some auxiliary facts

As first we prove some auxiliary statements.

Lemma 2.1. An operator Py determined by the expression
ALY ue = (L4 2) ue. ue)ewi@
oo Julr)= s w(r), u(r 5" («

realizes an isomorphism between the spaces Wi™ (o) and Hy ().
Proof. Let’s consider the equation Pyu (1) = 0, u (1) € W™ (a). Obvi-

ously, the solution of equations
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d? "
(—@ +A2) u(r)=0

is of the form

m—1

(m —1)!

where Cy, Cy, ..., Cym1 € Hoyp—1/2. Hence we determine Cy, CY, ..., Cp—1 and

Ug (T) = 7TA (C + ACl T Am10m1> s

boundary conditions (39) and get

E 0 o 0 Cy
—E E o 0 4

RC=| E —E e 0 Cy = :
(-n)"'EC, | (-1)"*E - E Crnr 0

(40)

where CF = W Since the operator R is invertible, then all C; = 0,

i=0,m—11ie. up(7) =0. On the other hand, for any f (7) vector-function

1 —m 1 —m %
v =g [ (REA) T i g [ (B4 F () ean
Pzy

2T 2T

satisfies the equation
d? S\
(~im+42) w)=s )

in S, and the estimations on the rays I'z , = {)\/ arg A = 3 + a}, F%mra =
{\ argA =21 —a}

HA2m )\2E+A2 H + HA )\2E+A2 H < const

yield that v (7) € W™ (a). So, we look for the solution of the equation
Py(d/dr)u(T) = f(7), u(r) € W™ (1) in the form

m—1

u(T):U(T)—TA(Cﬁ TACH + .. +ﬁ

Amlcml) )
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where the vectors C; € Hop_12 (i = 0,m — 1) satisfy the equation RC =,
where R is determined from the left hand side of equations (40), and C' =
(co,CtyesCmat)y @ = (v(0), A7 (0),..., A=(m=Dy(m=1)(Q)). Since
v(r) € Wim(a) it follows from the trace theorem [4] that
v (0), A7 (t), .., A= VM=V (0) €  Hy,,19, therefore the vectors
Co,Ch, ..., Cpm1 € Hopyqy2, 16 u(7) € W3™(a). On the other hand, it is

easy to see that
[P0 (d/dr)u(7)]l < constl[|u(7)]]]4-

Then the statement of the lemma follows from Banach theorem on the
inverse operator.
It follows from this lemma and a theorem on intermediate derivatives that

o 2m

|u|]], and ||Pyul|, are equivalent in the space W, (o) and the numbers
wj = sup HAQm’ju(j)HaHPouH;l, j=12m—1
o 2m
0#ueWs (a)

are finite. For estimating the numbers w; we act in the following way. Since

for u (1) € W™ ()

15, d . g
%u (t Z“’) = @u (te“") e?,
then
d2 m 2 1 ' d2 m 2
HP(]’LLHZ = H(———}—A2) u = —"(EQZQ—+A2) Ugy (t) +

2

1 “2ia d? 2 "
+§H(€ ﬁ—i_A U_q (t)
On the other hand

NG 2\
'(e @jLA) Uq (1)

i (_1)m (Cfn) 672ialA2(mfl)ug‘2l)
=0

La(Ry;H)

2

Lo(Ry;H)

2

Lo(R+;H)
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AQm l : (41>
Lo(R4;H)
where
o (=)™ (™) el for [=0,2,...,2m
1 0 for 1=1,2,....,2n — 1.
Denote
— Z Cl)\lA2mfl
1=0
and construct polynomial operator pencils ([3])
P (X85 4) = Qo (M A)Qf (=X A) — (iN)¥ A2Em=d)
where (€ 0, bij and
b, ’ ‘ g
=8SuUp|=—F+——5| =Su ‘ _| =
EEE Qo( Zf; 1) g (526*210‘4— 1)
J
o ¢ | "
ceR| (64 + 1 + 2£26520)>

that may be represented in the form
Py (X 85 A) = ¢ (A 85 A) 95 (—A; 85 A)

moreover

A) = (BNAT =T (AE — a;, (8) A)
=0 =1

where Reco; () <0
It holds
Lemma 2.2.[3] For any v € W™ (R,; H) and 3 € [O,bj_Q}

1Qo (d/dt) v (B)13, iy — BIA™ 0D D, iy =
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where
~ m—1

P = (A" (t))j:0 € H,, s;(8)=R;(B) T, (43)

moreover R; (3) = (14 (3)), T = (tpq) and for

(_1)Vap+vyj (ﬁ)aq—ll—l (ﬁ) (Oé,, =0, v<0, v> m) )

NE

Tpgj (B) =

S
|
<)

tgi () =3 (=1)"Cpi (B)Covr (B)  (C,y =0, v <0, v >m)

v=0
forp=gq

Tpag (B) = Z (—1)" Reayi,j (B)og-v—1 ()

v=0

tpgj (B) = (_1)VReCp+V (B)Cy-r-1 (B)

NE

S
|
<)

and for p < q we assume

Tpaj (B) = Tapg (B)y  tpg = tgp-

The next lemma follows from 2.2.
Lemma 2.3. Let § € [0,b;%). Then for any u(r) € W3™ («) it holds the
equality

1Py (d/dr)u (r) 2 = B AP0 ()] = S 6, (s e I,y

1
51105 (d/dt: B A) v O, iy + (M (5) &, 2)
where @ — (APn=200) )™ My (8) = Yigs; (8) o + sy ()7,
and s; () is determined from (43)

Uy = diag (1, e e ei(m_l)a) .
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The proof of lemma 2.3 follows from lemma 2.2. and the fact that
(A1 () = (A2 (0)) =
and

(A2=17120 (0)) = g (47200 (0)) = o

1.3. The basic result

By ptj.m () we denote a matrix obtained by rejecting the first m rows and
columns from M; (). It holds
Theorem 2.1. Let A be a self- adjoint positive —definite operator, the opera-
tors Bj = A;A7 (j =1,2m — 1) be bounded in H and the inequality

2m—1

o= xilBamyll < 1, (44)

=0
is full filled, where the numbers x; are determined as follows

Yi >{ bj if det/ij}m (ﬁ) #0
j =

Lo 1/2 otherwise

/2

here ,uj_l is the least root of the equation det ;. () = 0. Then the problem

(38), (39) is regularly holomorphically solvable.
o 2m

Proof. It follows from lemma 2.3 that for u (1) €W, (a)and 3 € [0,b;?)
it holds the inequality

SN 1
1Py (d/dr)|% — || A" u|| = 5103 (d/dt; 55 A) ua Ot

1
+5ll9; (d/dt; 5; A) u—a () 1ty + (im (B) @5 B) (45)

where, ¢ = (A¥m=I71/2¢U) (0));’:01.

positive operator. Then A; (0) is east is the least eigen value of the matrix

We can easily verify that p;,, (0) is a

tjm (0) is positive as well. There fore, for each 3 > 0 A (8) > 0. For

estimating ; we consider two cases.
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1) If x; > b;, then X;2 € [O, 6;2). Then from definition of x; it follows that
o 2m

for all (x; % b;?) there exists a vector-function ug (1) €1V, (a) such that
I1Po (dfdr)u ()l < 54 u]|
Then it follows from the equality (45) that

1 1 -
165 (d/t; B; A) a7 iy + 51105 (@t B; A) ol Ly, ary + (1 (B) B, @) <O,

i.e.(pjm (B)@,¢) < 0. Thus, for 5 € (X;Q: bj’Q) the last eigen value A () < 0.
It follows from the continuity of A; () that the function A; () vanisnes of
some points [O, bj_Q), i.e. at the points det p;,,, (5) = 0. Thus, in this case the

equation det 1, (3) = 0 has a solution from the interval [O, 6;2). Since the

o 2m
last of them is the number fi,, then x;? > pio. Thus, for u (1) €W, (@)

HAm—ju(j) (T)H < IU,;I/ZHPOU (™l

«

2) Let x; < b;. Then of the equation det 1;,, () = 0 has a solution
from the interval [0,6]72), then y; < b; < u}l/z. But if det 11, () # 0 for
8 e [O, bj_Q), then f1;,, (3) is positive for all § € [0, bj_Q). Therefore it follows

o 2m
from the equality (45) in this case that for all u (1) €W, (a)and § € [0,b;?)

H2 > 0.

1Py (d/dr)u ()l = B]|A*"ul) ()],
Passing to limit as § — bj_2 we have

|42 (n)]],, < BllPou (7).

o 2m

i.e. x; <bj. Thus, for all u(r) €W, («) it holds the inequality
|4 ()], < il P (Dl 7 =T,2m =T,

where y; is determined from the condition of the theorem. Now we look for the

solution of the boundary value problem (38), (39) in the form of the equation

o 2m

Pou(r) + Pru(r) = f (1), u(r) €W, (a), f(7)€ Ha(a)
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2m—1

Pyu (1) = (—— +A2>mu(7), Pu(t) = 2 Agp_ju) (7).

By lemma 2.1 the operator P, ' exists and is bounded. Then after substi-
tution FPyu (1) = v (7) we obtain a new equation in Hy («)

v(r)+ Pl (r) = f(7)

or

Since

2m—1

Z Aszju(j)
j=1

2m—1

[P Pg |, = 1Pl = < D IBonl
j=1

«

2m—1

[ Az ju@|| < > 1 Bams gl Poull, = ol Poull, = ollv]l,,

j=1

and by the condition of the theorem o < 1, the operator (E + P1P0_1) is

invertible in Hj (a). Hence we find
u(t) =P (E+ PPy f(r)
where it follows that
fulllq < const]|fl-

The theorem is proved.
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82.2. On m-fold completeness of eigen and adjoint vectors of a

class of polynomial operator bundles of higher order
2.1 Introduction and problem statement

Let H be a separable Hilbert space, A be a self-adjoint positive definite
operator in H with completely continuous inverse A~'. Let’s denote by H, a
Hilbert scale generated by the operator A. Let S, = {\/|arg\| < a}, 0 < a <
7/2 be some sector from a complex plane, and S, = {N]arg A — 7| < T —a}.
In the given paper shall search m-fold completeness of eigen and adjoint vectors
of the bundle

2m—1

P\ = (-NE+A%)"+ Y NAy, (46)

corresponding to eigen values from the sector S,. To this end we introduce
some notation and denotation. In the sequel, we shall assume the fulfillment
of the following conditions: 1) A is a self-adjoint positive definite operator;
2) A7! is a completely continuous operator; 3) The operators B; = A;A ™,
j = 1,2m are bounded in H.

Denote by Lo (Ry; H) a Hilbert space whose elements u (t) are measurable
and integrable in the sense of Bochner, i.e.

1/2

Ly (R H) = S 0l) [ Ol = | [ IOt | < o0

Let Hy (c; H) be a liner set of holomorphic in S, = {\/]arg A| < A} vector

functions u (z) for which

lpl<a

sup/ Hu (te“") Hth < 00.
0

The elements of this set have boundary values in the sense of Lo (Ry; H)
and equal u, (1) = u (te®) and u_, (t) = u (te~*). This linear set turns into
Hilbert space with respect to the norm

1 2 2 /2
o @ = 5 (It O + 1m0 OV )
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Denote by W™ («; H) a Hilbert space

Wi (a; H) = {u(z) /u®™ (2) € Hy(a; H), A*™u(z) € Hy(o; H)}

with norm

1/2
Il = (a1 + [ 4%

Bind a bundle P (\) from the equality (46) with the following initial value

problem:

P(d/dz)u(z) =0, (47)

u? (0) =p;, j=0,m—1, (48)
where we’ll understand (48) in the sense

=0.

im [ (2)]],,
z—0

larg A| < a

2.2. Some auxiliary facts

Definition 2.1. If for any v; € Hop—j_1/2 (7 = 0,m — 1) there exists a
vector-function u (z) € W™ (a; H) satisfying equation (47) in S, identically

and inequality

m—1
Hulll, < const  195lla;1 2
j=0

they say that problem (47), (48) is regularly solvable and u (z) will be called a
regular solution of problem (47), (48).
Let

2m

o (A) = (=X% + 1)4 = Z AP

k=1
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Y (A B) =00 (M) o (=) — BN, B e [0,b7).
then
(N B)=F (X B) F(=\0)

moreover, F'(\; #)has roots in the left half-plane and is of the form

F(XB) =) ar(B) N,

k=1
Denote by M; ., () a matrix obtained by M; () by rejecting m first rows
and m first columns, where

My (8) = 31315, (8) i+ 08, () ;).

i = diag (1,6, %, im=D2) g e [0,5-7],

J
b; = sup 3 72
ceR| (& + 1+ 282 cos 2a)™

and

moreover R; () = (14, (5)), T = (tp,). For p > ¢

Tpgj (B Z ) Qo (B)ag-1(B) (a, =0, v <0, v>2m)

v=0

Upg,j (ﬁ> = Z (_1)ch+v,j (ﬂ)cqfl/*l (ﬁ) (Cv =0, v<0, v> Qm)
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tod (B) = Y (—1)" Recp; (B)cq—v— (B)

v=0

and for p < ¢

Tpag (B) = Tpaj (B)s  tpgi (B) = tpg (B)

moreover oy, (3) and ¢ are the coefficients of the polynomial g (A\) and F' (\; 3).
The following theorem is obtained from the results of the papers [2] and [5].
Theorem 2.1. Let A be a self-adjoint, positive definite operator, the operators
Bj = A;A7 (j = m) be bounded in H and the inequality

2m
> xlBil <1,
j=1
be fulfilled, where the numbers x are determined as

i M.
Gz et ) 70 (49
p; "7, in otherwise

Here ,uj_l/2 is the least root of the equationM;,, (3) = 0. Then problem
(47)-(48) is regularly solvable.

In order to study m- fold completeness of a system of eigen and self-adjoint
vectors corresponding to eigen-values from the sector S, we have to investigate
some analytic properties of the resolvent.

Definition 2.2. Let K <§a> be a system of eigen and adjoint vectors corre-
sponding to eigen values from the sector S.. If for any collection of m vectors
from the holomorphy of the vector-function
2m—1
R()) = Z (A2m—j—1/2p—1 ()\))*A2m—j—1/2/\j¢j
§=0
in the sector Sy, it yields that K <§a> in strongly m-fold complete in H.

Note that this definition is a prime generalization of m-hold completeness

of the system in H in the sense of M.V. Keldysh and in fact it means that the
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derivatives of the chain in the sense of M.V. Keldysh are complete in the space
~ m—1
of traces H = @© H,,_j_1/s.
5=0
It holds the following theorem on an analytic property of the resolvent.

Theorem 2.2. Let the conditions 1)-3) be fulfilled and it holds the inequality

2m—1

> billBamoyll < 1,
5=0

where

0,2m

bj = sup ( I ) , ] =
cer \ 1+ &+ 282 cos 2a

Besides, let one of the following conditions be fulfilled:

a)Ateo, (0<p<m/(m—2a));

b) At eo, (0<p<oo), B; (j=0,2m) are completely continuous
operators in H

Then the resolvent of the operator pencil p (\) posseses the following prop-
erties:

1) A*™p=1 () is represented in the form of relation of two entire functions
of order not higher than p and has a minimal type order p;

2) there exists a system {Q} of rays from the sector S, where the rays

Pzio= {/\/arg/\ = g +a}, [sx = {)\/arg/\ = 3% —a},

are also contained, and the angle between the neighboring rays is no greater

than w/p and the estimation

" (V)] < const|\| 7"

|A*"p~" (W) < const

holds on these rays.

Proof. Since

P(AN) A = (E + Bap) (E+T(N),
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where

2m

T(\) =) A7,
j=1
(E + Byy) ' B;AT2, j=1,3,...2m—1,2m

c; = 2 ,
! (E + Bay) ™ (Bj + (—1)7 ( ,m ) E) A% j =24, 2m—2.

J

Then applying Keldysh lemma [6], we get that
AN = (BE+T (V)™ (E + Ba) ™

is represented in the form of relation of two entire functions of order not higher
than p and of minimal type at order p.
On the other hand

pA) =po(A) +p1(A),

therefore

-1

p ) =py (N (E+pi (N)pgt (V)

-1

A2 (A) = A7 () (B +pr (M pg (V)

Since by fulfilling the condition a) of the theorem we get on the rays Izia

3

and F%ﬁ_a (i.e. for A = rei(%“‘), = rei(T*a))

2m—1

lpr V) pat V< Y 1Bl A A 05" )| g (50)
j=0

therefore we should first estimate the norm

H)‘JAQTnijpal (A) HHHH

on the rays 'z, and sz _,. Let A = rel(5+e) ¢ |
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Then it follows from the spectral expansion of the operator A

H)\jA2m—jpal HH—>H — sup /\jMQm—j (_/\2 + MQ)—m’ _
pET(A)
— Pl (e 4 2 T = sup [ (rt 4 pt 4 202 cos 2a) 2
neT(A) peT(A)
ﬁ 2(2m—j) 2
= sup R i = b;.

per(A <£> <£> cos 2a
1 m

So, we get from inequality (50)

2m—1

o1 Mgt W] < D 1Bamgllb; < v < 1.

j=0

Therefore on this ray
_ 1
o™ OO < " ) [[(B -+ o 0) 7| < Ml 1
On the other hand, on the ray I'z ., it holds the estimation

1
(A 4 pt 4 2X2 02 cos 2ar)

Hpgl ()\)H = H(—)\QE—l—AQ)_ = sup

pnea(A)

m | -
2

If cos2a >0 (O <a< %), then

1
sup | <
peo(A)| (A + pt + 20242 cos 2a) 2
1 —om
——| < const|\] 7™
pea(A)| (A + pt)2

It is analogously proved that on these rays

| A*p~" (N)|| = const.
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The theorem is proved.
2.3. The basic theorem

Theorem 2.3.Let conditions 1)-3) be fulfilled and it holds

2m—1

> XillBam—jll < 1,
§=0

where the numbers x; are determined from formula (49).

Besides, one of the conditions a) or b) of theorem 2.2 is fulfilled.

Then the system K <§a) is strongly m-fold complete in H.

Proof. Prove the theorem by contradiction. Then there exist vectors
Yr  (k=0,m—1) Hap_j_1/2 for which even if one of them differs from zero

and

H

Z A2m k— 1/2 -1 ()\))*)\kAmejfl/Zwk

7=0
is a holomorphic vector-function in the sector S,. By theorem 2.2 and Phragmen-
Lindelof theorem in the sector R (\) the S, has the estimation

IR ()| < const|A\|~"2.

On the other hand, by theorem 2.1. problem (38)-(39) has a unique regular
solution u (z) for any ¥, € Ham_j—1/2. Denote by u u (\) its Laplace transfor-

mation. Then wu (z) is represented as

1

u(z) = zim u(\)eMd\ — 5 u(N)eMdn,
AP Pag
where () = p~L (A) g (\) and g ()) = nil Am=1Q,;ul) (0), Q; are some oper-
ators, obviously, for ¢ > 0 =
m—1
WO W) ) = | (9O, RN

k=0 r
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o7

Since the functions v (A) = (g (A), R (X)), is an entire function and on I,
it holds the estimation [Jv (A)]| < ¢/A]*"", then

m—1
v(A) = Z a;N.
=0

Since

/ v (N)eMd\ =0,

I'>

then for ¢t > 0

3
L

(u(k) (t) 7¢kz) = 0.

Hopm k—1/2

I
o

J

Passing to the limit as ¢ — 0, we get that

3

14

0

0,

HH2mfk71/2

=
Il

ie. all Y, =0, k=0,m — 1. The theorem is proved.
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§ 2.3. On the existence of ¢-solvability of bound-

ary value problems

In this section sufficient conditions are found for ¢-solvability of boundary
value problems for a class of higher order differential equations whose main

part contains a multi charachteristic.

3.1. Introduction and problem statement

In the present paper, using the method in the paper [1] we study the existence

of holomorphic solution of the operator-differential equations

d dQ ) m 2m—1 ‘
N = - . (Qm— )
g (dz) ue) = ( FERES ) R ; A (2), 2 € S, (1)

with initial-boundary conditions
u®(0)=0, v=0,m—1, (52)

where A is a positive-definite selfadjoint operator, A; (j = 0,m — 1) are lin-
ear operators in an abstract separable space H, u(z) and f(z) are H—valued

holomorphic functions in the domain
T T
Sp =12/ —f<argz <a}, 0§oz<§, 0§ﬁ<§
and the integers s, (v = 0,m — 1) satisfy the conditions
0<sg<s1<...<Spm1<m-—1.

Let H be « separable Hilbert space, A be a positive definite selfadjoint
operator in H, and H, be a scale of Hilbert spaces generated by the operator
Aie. Hy= D(A), all, = [ A, 2 € D(A"), 7 > 0. Denote by Ly(R, : H)
Hilbert space of vector-functions f(t) with values from H, defined in R, =

(0, +00), measurable, and for which

2

1 oy o) = /||f(t)||2dt < 0.
0
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Then, denote by Hs(a, 3 : H) a set of vector-functions f(z) with values
from H, that are holomorphic in the sector S, g = {2/ —f <argz <a}
and for any ¢ € [—3,a] of the function f(£e*?) € Lo(R, : H). Note that
for the vector-function f(z) there exist boundary values f 5(¢) = f(e %)
and f, (&) = f(£e™) from the space Ly(R; : H) and we can reestablish the
vector-function f(z) with their help by Cauchy formula

I T (3 NP R N (5 S
f(z)_Qm' §e—zﬂ—z€ d 27ri/§ew—ze dc.
0 0

The linear set Hy(ov, 3 : H) becomes a Hilbert space with respect to the

norm [4]

1
2

1 2 2
17y = 5 (1o + Wl )

Now, define the space W™ (o, 3 : H)
Wim™(a,B: H) = {u/ A%™u € Hy(a,3: H), u*™ € Hy(a,8: H), }

with norm

. 12 3
|||U|H(a,,@) = <H A? uH?oc,ﬁ) + Hu(2 )H(a,ﬁ)) :

Here and in the sequel, the derivatives are understood in the sense of complex
analisys in abstract spaces ([7]).

Definition 3.1. The vector-function u(z) € Wi™(«, 3 : H) is said to be
a regular solution of problem (51),(52), if u(z) satisfies equation (51) in Sia p)
tdentically and boundary conditions are fulfilled in the sense
lim Hu(Sj)(z)HQmﬂjJ =0, j=0,m—1.

z—0 2
—f<arg z<«

Definition 3.2. Problem (51),(52) is said to be ¢-solvable, if for any
f(z) € H C Hy(a, B : H) there exists u(z) € Wy C Wi™(a, 3 : H), which is a
reqular solution of boundary value problem (51),(52) and satisfies the inequality

el 0,8y < const ([ llap -
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moreover, the spaces Hy and Wi have finite-dimensional orthogonal comple-
ments in the spaces Hy(o, 3 : H) and Wi™(«, 3 : H), respectively.

In the present paper we study the ¢-solvability of problem (51),(52). The
similar problem was investigated in general form in [1], when the principal part
doesn’t contain a multiple characteric. In the author’s paper [5] for a = § =
m/4 the one valued and correct solvability conditions of problem (51),(52) are
found in the case when the principal part of equation (51) is biharmonic. For

simplicity we consider equation (51) with boundary conditions
u(0)=0, j=0,m—1. (53)

The general case is considered similarly.

3.2. Some auxiliary facts

At first, let’s prove some lemmas.
Lemma 3.1. The boundary-value problem

) (dilz) u(z) = (—j—; + A?)mu(z) —u(z),  z€Smp  (54)

u0)=0, j=0,m—1 (55)

1s reqularly solvable.

Proof. It is easily seen that ([1]) the vector function
1
= — [ By (V)o(h)edA 56
o | i (56)
T
satisfies equation (54) identically in S, 3 where () is a Laplace transform

of the vector-function v(z) :

[e. 9]

0(2) = / v(t)e Mdt,

0

that is an analytic vector-function in the domain

~ T T
S(%g):{)\/ —§—Oz<arg)\<§+ﬂ}
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and for \ € S( )

[ =0, [A] =00, ([8])
in formula (56) the integration contour I' = Uy, where I'y = {A/ arg A = Z + 3},
Iy ={\ argA=—-Z —a}. Thus,

1 RPN 1 IR PNUURN
uo(z) = 5 /PO YN\ erd\ — 5 | Do "o\ e dN, 2z € Sap)-
I I's

On the other hand, it is easy to check that on the rays I'y and I'y it holds the

estimate
[ A2 Py (V) || + || A% Pt () || < const.

Then using the analogies of Plancherel formula for a Laplace transform we
get up(z) € Wi (av, 8 : H). Further, we seek a general regular solution of the

equation in the form

3
L

w(z) = up(z) + (zA)P e’ZACp, (57)

p

I
=)

where C), € Hmeé, and e *4 is a holomorphic in S(a,3) group of bounded
operators generated by the operator (—A). Now, let’s define the vectors C,
(p = 0,m — 1) from condition (55). Then, obviously, for the vectors C, (p =
0,m — 1) we get the following system of equations:

’
Co = —Up (O),

—co+ ¢ = =AM/ (0),
co — 2¢1 + 2¢9 = —A7%"(0),

1

) et e = — AT (),

It is evident that the main matrix differs from zero, since it is triangle.

Therefore, we can define all the vectors C, (p = 0,m — 1) in a unique way. On
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the other hand, u{’(z) € Hyp_j_1, since u9(z) € W2m(a, B H), therefore
the vectors C), € H,
Thus,

I
m—j—3

u(z) = up(z) + A Z QpgA~ “w(0). (58)
The form u(z) and the trace theorem implies that the inequality

HUHWQQm(a,B:H) < const HUHHg(a,B:H)

holds. The lemma is proved.
For the further study we transform the form of the vector function ug(z).

From formula (56) after simple transformations we get

uo(Z):/ QLm Pyt (A?)eX0dN | v_g(€)dg —
0 0
‘/ QLM / Byt (e ) m0d) | g ()dg =
0 0
= [Giee - p(eic — [ Gtz —gualeris,  (39)
0 0
where
vo(t) = v(te™),  vg(t) = v(te ™)
and

) = 5- fP (Ae?)eAsdA

—1300

Gi(s) = 5= [ Pyl'(Ae ™@)erdA

21

Now, let’s prove the main result of the paper.
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3.3. The basic results

Theorem 3.1. Let A be a positive self-adjoint operator with completely contin-
uous inverse A~'. The resolvent P~ (\) exist on the rays Ty = {\/ argA = + 3},
r, = {)\/ arg\ = —3 — a} and be iniformly bounded, the operators B; =
Aj x A7 (j = 1,2m —1) be completely continuous in H. Then, problem
(51),(53) is ¢p-solvable.

Proof. Write P(d/dz) in the form

P(d/dz)u(z) = Py(d/dz)u(z) + Pi(d/dz)u(z),
where

Po(d)dz)u(z) = (—j—; + A?) "2,

2m—1

Pi(d/dz)u Z AjuPm=9)

Having applied the operator P(d/dz) to both sides of equality (58) we get

-1

v(2) = Py(d/dz)ug(z) + Pi(d/dz) ZAZaqu w((0).  (61)

3

3
I
o

Passing in equality (61) to the limit as z — te'® and z — te™ (t € R, = =
(0,00)) and using for uéq) (0) the expressions found from equality (59) allowing
for (60) we get the following system of integral equations in the space Lo( Ry :
H)

valt) + ] (ot =€) + Kifte™ ) v e+
(7 = ) 4 Kalte™ €)) v-a(€)d = £o(t)

(t) +f (Ki(t — &) + K(te ™, &)) v_g(&)dé+
(KQ(te_Z(aw) — &) + Ky(te™ — €)) va(§)dE = f-p(t)

(62)

V_

Q

+

where

Ky (te'® — &) = Py(e®d/dt)G(te? — €);
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Kalte™ — &) = P(e™ D)t — )

-1

3

Ks(t,&) = —Pi(ePd/dt) Y (te P AyPete ”AZ% ATIG (=),

q=0

3Ngh

3

Ky(t,€) = Py(e7d/dt) (te‘ZﬁA)p —telaAZaqu 1GW (—¢).

q=0

i
o

0 2m
Since the operator Py(d/dz) maps isomorphically the domain W, («, [ :
0 2m

H) onto Ho(a, B : H) where I/V2 (o, B: H) ={u(z)/ u(z) € Wi™(a,3: H),

u(0) =0, j =0,m — 1}, then the ¢-solvability of problem (51),(53) is equiv-
alent to the ¢-solvability of a system of integral equations (61) in Lo(Ry : H).
Therefore, we study the ¢-solvability of the system of integral equations (61)
in Ly(Ry : H). Since P7!(\) exists on the rays I'; and I'y, then each equation

/Kt— &ds = F(&), j=1,2

is correctly and uniquely solvable in the space
Ly(R:H)=Ly(R:H)® La(R: H)

where f(t) € Ly(R : H), 3(t) € Ly(R : H). Therefore, for ¢-solvability of the

system of integral equations,

“+o00

0+ [ Kalt = ua(€)d = 16
)+ +Of°°K1 (t — E)o_p(€)dE = f_s(E)

in the space Ly(R, : H) it suffices to prove that the kernels K;(t + £) and
K5 (t + &) generate completely continuous operators in Ly(R : H). Then, to
prove the ¢-solvability of the system of integral equations (61) in the space
Ly(R, : H), we have to prove that the kernels K (te (@9 —¢), Ky(te="@+%) —¢),
Ks(te'® &), Ky(te!®, €), Kz(te™,€), Ky(te™€) also generate completely con-

tinuous operators in Ly(R, : H). The proof of complete continuity of these
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operators is similar. Therefore, following [1] we shall prove the complete con-
tinuity of the operator generated by the kernel K (t + &). Since

2m—1 ;
d’ 1 ,
73 22,23 2\ —m  A(t+&)
Ki(t+¢) = E Agp_je o —27ri/( N e"PE 4+ A%) e d\

0
and taking into account that for A € (0,700) and for sufficiently small sector

adherent to the axis 700 it holds the estimation
H(—/\2e2wE + A?)7™|| < const(1 + |A]) 7

we can represent K (¢t + ¢) in the form

(i—€)oo
2m—1
1 A
Ki(t+¢) = Z Agm—je€ ”ﬁ a5 \ 9 / (=A22PE 4+ A%) MMt | g\ =
0
2m-1 (i—&)oo
_ Z 2m.*j / )\2m—jAj(_/\2€2z‘,6E+A2)—m€>\(t+§)d/\
= 211 )

2m—

1
2—2 2m— jK1]t+£)

where € > 0 is a sufficiently small number, and
(i=¢)oo
K ;(t+¢) = / )\Qm*jAJ( A\2e 215E+A2) m ) 1)
t,e>0
Then
(i—€)oo
K1+ )y = / NI AT (= \2e28 ) 4 A2)"meMERE) )

/(Z o €>2m+1fj)\2mfjAj(_)\2 (Z . 8)262iﬁE + A2)7mefs)\(t+§)ei)\(t+£)d>\ <
0
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<|ii—2) / (GG — DA AI (N2 (i — 2P E 1 A?) e[ d(Ae) <

o0

< C. / e MO g(\e) <

0

C.
t+¢e

Using Hilbert’s inequality [9] we get from the last inequality that K ;(t +
€) generates a continuous operator in Lo(R, : H). To prove the complete
continuity of the operator generated by the operator By, ;K7 ;(t + &) we act
as follows. Let {e,} be an orthonormal system of eigen vector of the operator
A responding to {u,} : Ae, = ppen, 0 < g < ... < p, < ... and let
L, = i(, e;)e; be an orthogonal projector on a sub-space generated by the
first n"zzéectors. Since By,—; is a completely continuous operator, then as

m — o0

HQmJHHHH = HBj - BijHHHH — 0.

On the other hand

1B L I3 (t + €| =
m =6
= Z / )\2m—j(i_€)2M+1 J ( /\2( )2 Q’ﬂ—|—,ui)_m(-,en)Bjenei’\(t+5)e_>‘5(t+5)d)\ <
n=1 3
<C i/ 5)‘ - ]|M] —e>\(t+£)d /\8 < C / AFm e MO 7\
- €n=10 | — )\22—5 20208 4 42| / 14+ \2m '

Hence, it follows that the kernel By,,_;L,, K ;(t + £) generates a Hilbert-
Schmidt operator, since for j = 1,2m — 1 the following inequality holds

[ 1Bzt + oI dsat <
0 0

< [ ]2 e [ =48 g | dede =
— ]_ + AQm Sle § f -
0 0 0 0
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5 TR )\2m jSQm 7 d)\d 5 < AQm 1— jSQm 1—j d}\d
B // 14+ A7) (14 s2m)(1 + s)? 5= // 1+ a2y (1 4 s2my T
0 0 0 0

\2m—1-j i g2m—=1-j _

=2 d\ ds <0 ) =1,2m —1).

/1+/\2m /1+52m8 (J ,2m —1)
0 0

On the other hand

Bopm— i K1j(t + &) = Qum K1t + &) + Bam—j Lin K1 j(t + )

then the boundedness of the operator [f(\fj generated by the kernel implies
that the operator /T; generated by the kernel By, ;K ;(t + ) is the limit of
completely continuous operators T} ;,, generated by the kernels B;L,, K ;(t +
€). In fact the difference operators

—0 (m— o)

|72 = Tin
Lo(Ry:H)—La(Ry:H)

< 1 Qul || 1

Lo(Ry:H)—Lo(Ry:H)

Thus, Bon,—;Kq ;(t + §) generates a completely continuous operator in
Ly(Ry @ H). Since K;(t + &) generates a completely continuous operator in
Ly(Ry : H). The theorem is proved.
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§ 2.4. ON SOME PROPERTIES OF REQULAR HOLO-
MORPHIC SOLUTIONS OF CLASS OF HIGHER OR-
DER OPERATOR-DIFFERENTIAL EQUATIONS

In this section we give definition of regular holomorphic solutions of a class
of higher order operator-differential equations and Phragmen-Lindelof type

theorem is proved for these solutions.

4.1. Introduction and problem statement

In the paper [7] P.D.Lax gives definition of intrinsic compactness for
some spaces of solutions in infinite interval and indicates its close connection
with Phragmen-Lindelof principles for the solutions of elliptic equations. Such
theorems for abstract equations were obtained in the papers [10-11]. In our
case the main difference from the above-indicated papers is that a principal
part of the equation has a complicated- miltiple character and therefore our
conditions essentially differ from the ones of the indicated papers. Notice that
the found conditions are expressed by the operator coefficients of the equation.

On a separable Hilbert space H consider an operator differential equation
d
P
(dr) w(7)

where S/, is a corner vector

d2 m 2m A
(ﬁ - A2> w(r)+ Y Agpju? (1) =0, 7€ Spp,
i=0

(63)

Srjp = {1/ |arg 7| < 7/2},

and wu (t) is a vector —valued holomorphic function determined in Sy, with
values from H, the operator A is positive- definite self-adjoint, A, ( j= m)
are linear operators in H, A;A™ (j =1,2m), are bounded in H. All the
derivatives are understood in the sense of complex variable theory [4]. By

H,, we denote a space of vector-functions f (7) with values in H that are
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holomorphic in the sector Sy /2, moreover

sup /Hf te“")HHdt<oo (T—te“")

eilel<g

Lets introduce the space W37 (H) as a class of vector- functions u () with

values in H that are holomorphic in the sector Sy, and for which

d?m
sup (H t2m te“"

w:|¢\<*

1/2
) /

+ || A2 (k) || | dt < oo, (7 =te™).
H

Definition 4.1. If the vector-function u (1) € W37 (H) satisfies the equa-
tion (63) in Sy identically, it is said to be a regular holomorphic solution of
the equation (63).

By Uéa) we denote a set of reqular holomorphic solutions of the equation
(63) for which ¢’ ™u (1) € Hy,.

Obuviously,

U™ = KerP (d/dr) = {u/P (d/dr)u () = 0},
and for T >0

U™ = {u/u € Uéa),emu (1) € Hg,a} :

4.2. Some auxiliary facts

Lets consider some facts that well need in future. It holds

Lemma 4.1. The set U™ is close in the norm [[t]] y3m -
Proof. Let {u, (1)} ~, C Uéa) and let [|u, (1) — u (7)|[yzm — 0. Then,
obviously u (1) € W37 Show that u (1) € U, ie. P(d/dr)u(r) = 0. Since

[tn (7) = w (7)|lyyzm — 0, by the theorem on intermediate derivatives [4] for
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o0

each j (0 < j < 2m) a sequence {Agm Ju(]) (7')} converges on the space

n=1
H, . Indeed, as n — oo

HAgm_ju%j) (1) = Agp_ju (1) < const ||u(T) — up (7’)||W22m — 0.

...

Show that the sequence {Agm,juff) (7')} uniformly converges in any

) n=1 A
compact S C S,. Really, since Agm,juff) (1) and Agm,ju(” (1) € Hy,, there
exists their boundary value in the sense Ly (Ry; H), respectively Z, (t) and

Z+ (t) € Ly (Ry; H). Since

Gl ,mf_i [z (©)

— : . ed
27t ) Ee~io — 2712 Eelo — 7 &
0

Agm,ju(j) (T) =

| 1T o)
Am e e — .7 2o
2 Ju (7) 2m/§e o $ 2m’/§ew‘—76 d
0

and

| Azinjuld) (1) — Ag_ju? (1)

...

1 B - 9 n 1/2
NG <Hzn] (6) = 2 (é)"LQ(R+;H) + |z (€) — 2 HL2 (Ry; H)) -0,

then

HZT:] (f)—zj_ (g)HLQR H — 0, HZTT] (E)_Z;_ (f)HL Ry :H — 0.
(R4;H) 2(R4;H)

Obviously

su ) i HZ )H
pHAQm?] ! ( ) Ao - H =0 TEs 271'/ ’56 for — ’ d£+

20 (&) — = ©]
7'65 27T / |£€ o — T| dg =
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. s
g%(”zw(f)—zj(§)H2d£)1/2 !ﬁdf +
. s
b (Il © — = @) de) / @df 6

Since 7 € S C S, then

SUP/ jgem — 7| " de < /sup |cemio — 7|7 de < const.,
TES TES
0 0

Therefore, as n — oo it follows from (64) that

sup HAgm_jug)( ) — Agpn_ju? ( (r)|| — o,

TES

[e.e]
ie. {Agm Jugj )} uniformly converges in the compact to the vector-function
Agp_ju? (7). On | the other hand

sup || P (d/dr) un (1) = P (d/dr)u(7)| =

TES

= Sup
TES

2{:142n1 ]U/]) EE:JAQWI JU

<D [Aan A7 sup [ ACT) (7) — AP ()] <
=0 TES

2m

< const Z sup HA (2m=j u(]) (1) — ACm=3)y ) (7')H .

=0 TES

Then from wu, (1) € U™ (P (d/d7)u () = 0) we get

2m

sup || P (d/dr)u (7)|| < const Z sup HA(Qm_j)ug) (1) — ACm=i)y,(7) (T)H ,
TES =0 TES

it follow from the convergence in S

A(2mfj)u£lj) (1) — A@m=3),,0) (1)
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that P (d/dr)u(r) =0 ie. u(r) € US™. The lemma is proved.

Lemma 4.2. Let A be a positive self-adjoint operator and one of the
following conditions be fulfilled:

1)A™ €0, (0 <p<oo), AjA (j =1, 2m) are bounded H and solvability

condition holds;
2) At €0, (0<p<o0). Then if u(r) € U™, then for its Laplace trans-
formation U (A) estimation
H@ (/\)H <const((N+1])7", Ae {)\/ larg \| < g + a}

15 true.

Proof. It is easily seen that

2m—1
A 1
B = =P Y Qe (0),
V2 par;
where
2m—q—1
QN = ) N4
j=0
and
i j=1,3,.2k—1,k=1,m
7 Aj+ (1Y CHPAT =24, 2m —2,2m.

Obviously, an operator pencil p (A) is represented in the form P (\) = Py (\) +
Py (N), where

2m
Py(A\) = (=NE+ A", PL(N) =) NAyj,
j=0

and on the rays Fi(£+a) = {)\/ arg A\ = £7 + a} in case 1) from the solvability

condition, in case 2) from Keldysh lemma [6] it follows that

sup  ||P(A) Pyt (V)| < const. (65)

Tl (54a)
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Therefore, from these rays

| =

P (N ( 3™ Q, (V) u@ (0)

But in these identities it holds (65) and

1P (V)| < const (A2 +1) (67)

< const [N (68)

Thus, from (66) allowing for (65), (67) and (68) on these rays we got the

estimation
Hﬁ ()\)H < const (|]\|+1)7".

Notice that the angle between the rays I' (2+0) equals (7 + 2«). It follows
from, conditions 1) and 2) that P~ ()\) is a meramorphic operator-function
of order p and minimal type of order p, i.e. it is represented in the form of
relations of two entire functions of order pand minimal type for order p. Since

u (A) is a holomorphic vector-function in the domain (see [12])
m
R {/\/| arg | < 7 + a}

and the angle between the rays equals 7+2a;, for 0 < p < 7/ (p + 2a) it follows

from the Phragmen-Lindelof theorem that in the sector Sz, the estimation

HQ/) ()\)H < const (N +1)7"
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holds.
In case 2) M.V. Keldysh theorem [6] yields that there exist the rays between
which the angles are less than 7/p and the estimation (66), (67), (68) and the

estimation
A -1
Hu ()\)H < const (JA| + 1)

hold. The lemma is proved.

4.3. The basic result

Now, lets prove a theorem on Phragmen-Lindelof principle.
Theorem 4.1. Let A be a positive-definite self-adjoint operator,
A;ATI (j =1, 2m) be bounded in H and one of the two conditions hold:

1) A€o, (0<p<n/(m+2a)) and solvability condition holds;

2) A7t €0, (0 <p<o0). Then, if a reqular holomorphic solution u (T) €
N« then u (1) = 0.
7>0

Proof. For u (1) € U it follows that the Laplace transformation 1 (N
admits holomorphic continuation to the domain {\/|arg(A+7)| < Z + a}.
The inclusion u (1) € ) <UT(O‘)> implies that ﬁ()\)is an entire function, i.e.

7>0

2m—1
it is an entire function and N =Pt X Q,(\)u?(0), moreover u (\)
q=0

is an entire function of order p and of minimal type for order p. Further, in
the second case, we can use the Keldysh lemma and obtain that u (A) is an
entire function of order p and of minimal type for order p on all the complex

half-plane

Hﬁ()x)” < const (A +1)7".

In the first case, since the angle between I' (2+a) in the left half-plane

T —2a and ™ — 2a < 7+ 2, then again from the Phragmen-Lindelof theorem
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it follows, that (A) is an entire function of order p and of minimal type for

order p and on the complex plane

Hﬁ(A)H < const (A +1)7".

Thus, as n — 0o, U (A) = 0. Hence, it follows that u (7) = 0. The theorem

is proved.
References

1. Gasymov M.G. On solvabilty of boundary value problems for a class of
operator differential equations. Soviet Nat. Dokl., 1977, v.235, No3, pp.505-
508. (Russian)

2. Mirzoyev S.S. The problems of the theory of solvability of boundary
value problems for operator differential equations in a Hilbert space and related
spectral problems. The author’s thesis for doctor’s dissertation. BSU, 1994,
32p.

3. Mirzoyev S.S. On the norms of operators of intermediate derivatives.
Transac. of NAS of Azerb., 2003, v.XXIII, No 1.

4. Lions J.-L., Majenes E. Inhomogeneous boundary value problems and
their applications. M; “Mir”, 1971, 371 p.

5. Gumbataliyev R.Z. On holomorphic solution of a boundary value prob-
lems for a class of operator-differential equations of fourth order. Izv. AN
Azerb., v.XVIII, No 4-5, 1997, p.63-73.

6. Keldysh M.V. On the completeness of eigen functions of some not self-
adjoint linear operators. Uspekhi mat. nauk, 1971, v. XXVI, issue 4(160),
pp.-15-41. (Rissian).



76 Rovshan Z. Humbataliyev

7. Lax P.D. Phragmen-Lindeloff theorem in harmonic analysis and its
application to some questions in the theory of elliptic equations. Comm. Pure
Appl. Math., v.10, 1957.

8. Sidorov Jn.V., Federyuk H.V., Shabunin H.I. Lectures on theory of
complex variable functions. M, ”Nauka”, 1989, 477p.

9. Hardy G.T., Littlewood, Polia G. Inequalites. M, "IL”, 1948, 456p.

10. Agmon S., Nirenberg L. Propertis of solutions of ordinary linear differ-

ential equations in Banach space. Comm. Pure Appl. Math., v.16, 1963.

11. Yakubov S.Ya. Linear differential-operator equations and their appli-
cations. Baku, "ELM”, 1985, 220pp.

12. Keldysh M.V. On eigen values and eigen functions of some class of not
self-adjoint equations. Dokl. AN SSR, 1951, v. 77, No 1. (in Rissian).

13. Humbataliyev R.Z. On m-fold completeness of eigen and adjoint vectors
of a class of polinomial operator bundless of a higer order. Trans. of NAS of
Azerb., v.XXIV, No 4, p.91-97.



On the existence of solution of boundary value problems 7

Chapter 111

In this chapter we give definition of smooth solutions. For a boundary value
problem we prove theorems on the existence and uniqueness of these solutions
in terms of the coefficients of the studied operator- differential equations of
higher order, moreover the principal part of these equations has a multiple

characteristic. Here we mainly use S.S.Mirzoyev’s [1] metod.
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§3.1. On the conditions of existence of smooth solu-
tions for a class of operator- differential equations on the
axis

1.1. Introduction and problem statement

Let H be a separable Hilbert space, A be a positive- definite self- adjoint
operator in H, and H, be a scale of Hilbert spaces generated by the operator
A, ie. H, = D(AY), (z,y), = (A%z, A'y), (z,y) € D(A7). Denote by
Ly (R;H) (R = (—o00,+00)) a Hilbert space of measurable vector- functions
quadratically integrable on Bochner in R and define the norm in this space by
the following way

1/2

1l = /Wvuw e

Further, at natural m > 1 (m € N) we define the following Hilbert space
2]
W' (Ry H) = {u/u™ € Ly (RyH), A™u€ Ly (R; H)}

with the norm

2 m 2 1/
el = (11 gy + 1A )
Here and further, the derivatives are understood in the sense of the theory

of distributions [2].

In the given paper we consider the equation

P (%) u(t) = (—j—; + AQ) )+ %ZIA% u ()= f(t),t € R, (69)

where A = A* > cE  (¢>0),A; (j=1,2n—1) arelinear, generally speak-
ing, unbounded operators, f (t) € Wi (R; H), u (t) € W3""* (R; H). Here S is
a fixed positive integer.

Definition 1.1. If the vector- function u (t) € W3 (R; H) satisfies equation
(38) at allt € (—o0, +00), then we’ll call u (t) the smooth solution of equation

(38).
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1.2. Some auxiliary facts

We prove first the following lemma, that we’ll need later on.

Denote by
P (%) u(t) = (—% + A?) w(t), u(t)e W2 (R;H),  (70)

Lemma 1.1. The operator Py (d/dt) defined by equality (70), is an isomor-
phism from the space W3" " (R; H) to W3 (R; H).
Proof. By virtue W, (R; H)
A2
Hdts ( az " ) !

2

2

d? 9

2

u&wmw@:'

l2

Z C;{AQ("*‘])*SU(Q‘])

q=0

Z CTqLAQnu(anqus)

q=0

<

Lo Lo

<ot (St 0 4 3 )

q=0
where C4 = w. Applying the theorem on intermediate derivatives
[2] we get that

I (@fdt) ullf; < constlful e,

i.e. the operator Py (d/dt):W;"" (R; H) — W2*(R; H) is continuous. Let
u(t) € Wy (R; H). Then we denote by Py (d/dt)u(t) = g(t). Evidently

after Fourier transformation we have

Py (—i€) (€)= G(€) or 4 (€) = Py (—i€) 4 (€). (72)
By Plancherel theorem the inequality
2 A 2
lo s = €9, 0 A9, <eonst. ()
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should be fulfilled. On the other hand, from (72) we have

Ju @l = € @I, + |4t -
A 2 A 2
5271—}—8130*1 (—25)9( ) . + HA%—I—SPO*l (—Zf) g (f) ) < (74)
A 2 2
<swple ! (=) |l @+ supllaz B (i) 49 o)
£ER Lo Lo

In turn, at £ € R

|42 Pt (—ig)]| < sup [o™ (—i& — o) " (—iE +0) 7| =
veo(4) ) )n (75)

= sup |02" (&% + 0?) "’ < sup’(EQ‘_’F—2 <1
oea(A) >0

and

Jenpg" (~ig)] < sup [ (~i — o) (i€ + )| -

oco n (76)
= sup [¢27 (62 +0%)"| < sup| (afim) | < 1
c€a(A)

Allowing for inequalities (75) and (76) in (74) we get

2

[u @l < i@ +|Ja5@] =@y @

ie. u(t) € W, (R; H). Evidently

A

m/ (—i€) 6 (€) de

satisfies the equation Py (d/dt)u(t) = g (t) almost everywhere in R. Fur-
ther it follows from Banach theorem that this mapping, i.e. the mapping
Py (d/dt)u (t) = g (t) is an isomorphism.

The lemma is proved.
Lemma 1.2. Let the operators B; = AjA™, D; = ASA;A70+) (j=12n—1)
be bounded in H, i.e. A; € L(H;H)N (Hj4s,H,) (j=1,2n—1). Then the
operator Py (d/dt) defined by equality (71) is bounded from W3t (R; H) to
Wy (R; H).
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Proof. Since u (t) € W3"** (R; H), then the inequality

2n—1 2n—1
1Py (d/dt)w (t)[l; = Z Asp ,]u%’ Z A Agy_ju? <
Lo (R;H) Lo (R;H)
2n—1
<on <Z HAzn_jA_(Q”_j)A%_ju(jJrs)H;) +
=1
anl
+2n (Z HASAQTL A~ (@2n=3) g2n—i,,(5+s) HL ) <
1
2n—1 '
< an max <HA2n_jA—(2n—j)H2HASA%_],A—(2n+s—j)H2) »
j=1
x (|laz |} + Az ), (78)

holds.
Then it follows from the theorem on intermediate derivatives that

HAQnJrsfju(j) 2

12 < K lul g, [ APt

2
12 < K llul e,

where the number K; > 0, K;;, > 0. Allowing for these inequalities in (78),

we complete the proof the lemma. From lemmas 1.1 and 1.2 we get

Corollary. The operator P (d/dt) defined by equation (38), by fulfilling condi-

tions of lemma 1.2 is bounded from the space W3"* (R; H) to Wi (R; H).

Lemma 1.3. The operator A"~ jt] is a bounded operator from the space Wy (R; H)
to W3 (R; H) and it holds the exact inequality

47 ) s (01800 0

where d,, ; = (2]—71)ﬁ (QT;nJ) e ,j=12n—1.
Proof. Consider in W;""* (R; H) the functional

Ej (u, B) = || Poullyy; — B]|A* 9l (2) =T.2n—1

g
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where 3 € [0;d,, j) Then

4Py (d/dt) uHL + || A% Py (d/dt)u||L — B|| Aty H
2

_ﬁHA% Ju(Hs)H _H 25 Po( 25 H +’)Asp0 25) (5)

g4 eigie)| 2

= J (1B + a2 (@8 + 42" — 50 42) (€)1 (€)) d =

2

+ e

2

= | (RB:&A6©.0©)d
(79)
where
P (856 A) = (6 4+ ) |(€2 + )" = et~ =
(80)

::@2+u%%”[1_ﬂwpﬁ > (€4 p2) (1= Bdyy;) >0

+1)*"

It follows from the spectral theory of self- adjoint operators that at £ € R
and 3 € [0; d2nj)

P; (8; —i&; A) > 0

Thus, it follows from equation (79) that at £ € R and 3 € [O d," ) the

2n,j
equality

. i1 2 i -
E; (u; 8) = | Po (d/dt) l3ys iy — BI| A" 7ul*) >0, j=12n—1

HW;(R;H)

holds. Going over to the limit at 8 — d;*" we get

2nj

|42y, < d3

The exactness of inequality (81) is proved similar to the paper [1]. Thus,

lemma 1.3 is proved.
1.3. The basic theorem

Now prove the basic theorem.
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Theorem 1.1. Let A be a positive definite self-adjoint operator, the operators
Bj = AjA7, D; = A*A; A0 (j=T1.2n—1) be bounded in H, i.e. A; €
L(H;H)N (Hjys, Hy) (j =1,2n—1) and the inequality

2n—1

a =" max{| By, 1 Doncs [}y < 1, (82)

j=1

hold. Then equation (69) have a unique regular solution u (t) € W3+ (R; H)
at any f (t) € W3 (R; H) and the inequality

Hu||W22"+S(R;H) < COWStHfHW;(R;H) (83)

hold.
Proof. It follows from lemma 1.1 that the operator is an isomorphism

Py (d/dt):W3"* (R; H) — W3 (R; H). Write equation (69) in the form
Py (d/dt)u(t) + Py (d/dt)u(t) = f(¢) (84)
Denote by Py (d/dt)u (t) = v (t). Then equation (84) has the form
v+ PPy lu=f

Show that le < 1. Evidently

PO?1 HW;(R;H)HW;(R;H)

2n—1
}}PlpglUllwg = leu“vv; < Z HAQn*J'“(j)HW; <
j=1
2n—1 A ] 1/2
< (HA%—J‘“(HS)HLJF HASA%_],U(J),EJ <
j=1
2n—1

<> max{ 1Al all Aol n

<
Il
—

o o 1/2
x (|laz =@+ A ) =
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— Z max{ || Ban—j||, HDanjH}HA%_ju(j)HW;'

j=1
But from lemma 1.3 and the last inequality it follows that

2n—1

[P By 0l < D Il Baamsll, 1Don—s oyt <

7j=1
Thus, the operator (E + PPy 1) is invertible in the spacelV5. Then

-1

v=(E+PP")f,

and

1

u=F Y (E+ PPy f.

On the other hand

-1

(E+PFY)

1
[ 1 [ s s < const

The theorem is proved.
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83.2. On smooth solution of boundary value problem
for a class of operator- differential equations of high order

2.1. Introduction and problem statement.

“Let H be a separable Hilbert space, A be a positive- definite self- adjoint
operator in H. By H, denote a scale of Hilbert spaces generated by the
operators A, ie. H, = D (A7), (z,y), = (A'z, A%y), (z,y) € D(A"). By
Ly (Ry; H) we denote a Hilbert space of vector- functions determined R, =
(0, +00) strongly measurable and quadratically integrable by Bochner with
square, moreover

1/2

2
s = | [ 170t | < oc.
—0

Following [2] we determine a Hilbert space W
Wi(Ry;H) = {u/u¥) € Ly (Ry; H), A'u€ Ly (Ry; H)}
with norm
_ L 112 0|2 1/2 _
||uHW2l(R+;H) - <HA UHLQ(R+;H) + HU()HLQ(R+;H)) , =12
Let’s consider the following boundary value problem

(4o

2n—1

d2 n
(—@ +A2) u(t) + Zl A2n_ju(J)(t) — (), t € Ry, (85)

u(0) =0, v=0,n—1, (86)

moreover f (t) € W3 (Ry; H), u(t) € Wot* (Ry; H), where s > 1 is a natural

number, A; (j =1,2m — 1) are linear in the space H.
2.2. Some auxiliary facts.

Denote by

o (Zn) ( o ) . ,2n , (87)
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and consider for § € [O; d;ﬁ;‘) the following operator pencils

Py (N By A) = ((—)\QE + A2~ BN AHJ') (GN* E+A%) . (88)

As is known, the pencil P; (); 3; A) has no on operaturm an imaginary axis

and we can represent it in the form
Pi(X; B; A) = F (X; B; A) Fy (=X; 8 A)
where
Fj (N 8;A) = (AE — wiA) .. (AE — wiysA)
Rew; < 0, j=T1,n+s. Indeed, for £ € R = (—00,+00) and p € o (\) the

characteristic polynomial P; (i§; 8; p) is of the form

P; (i€; 3; A) — ((52 )" - 552ju4n72j) (€2 4 1>) =

25 ,,4—27
= (€2 4+ 12 (6% + ) [1 = BELZT] > (€2 4 422) (6% + %)
_ 7
<[ e
Let’s consider the function
2

f(n) = —2

T >0
(1+n2)°

Obviously, it follows from the equation f’(n) = 0 that 2jn%~! (n* + 1)2n —
om2n (L+0)""""n¥ =0, ie j(14+n?) —2ny® =0orn® = j(2n —j). Then
2

BN
the function f (n) takes its maximal value at the point n = <2nj_j> . Thus

S\ 2n Qn_jAQn
-(@F) (&™) —ay

Therefore for § € [O; d_Q")

2n,j

Py (i&; B; A) = (€2 + p®)™ (€% + u®) (1 - pd2r ;) > 0.
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Thus, it follows from the spectral expansion of A that P; (i€; 3; A) > 0 for
¢ € R. On the other hand, a characteristic polynomial

Py (A Bip) = ((M)QS + p*) [(_)\2 + 1) =3 (M)Qj u4—2j} _
[T ) (-3 = &) (- 420" = g 3],

where Re¢, < 0 (g =1, s), moreover &, is a oot of equation (—1)* A\*+1 = 0.

Denote

b (N ) = (=X + )" = BN Y, j=T o T

Then, obviously ¢, (i; B; ) > 0 for g € [O dQnJ) and the roots of the
equation ¢; (\; B;p) = 0 are of the form \; = pw; (j=1,2n) . On the
other hand, if \; = pw;, aroot of equation ¢; (\; 3; ) = 0 is located symmetric
with respect to a real axis and origin of coordinates. Hence it follows that if

Rew; <0 (j=1,n) then

:]:

¢; (N B3 1) = (A= w]ﬂH —A —wjp).
7j=1

<.
I
—

Thus

n

H)\ {QMHA wj,u:H/\ wip), wo=—1
j=1 7=1

Jj=1

It follows from the spectral expansion of the operator A that

P (X B A) = (N 35 A) Yy (=X 55 A), (89)

moreover

s n n+s

v B A) = [T =& OB —wjd) =) a; (B) VA" +1 5, (90)
q=1 j=1 3=0
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where all «; () are real, Ly (8) =1, o, (8) = 1.
Lemma 2.1.The Cauchy problem

v (d/dt; B; A)u(t) =0
u (0)=0, v=0n—-1, (91)
u(l/) (O) _ A7(2n71/71/2)90]/

for all v, € H has a unique solution from the space W3 (R, ; H).

Proof. Obviously §, # &, (¢ # p). Further, we prove that the roots of the
equation, ¥; (A\; 3;A) =0 (p € o (A))are prime. It suffices to prove that for
3 € [0;dy,") all the roots of the equation (—A* + 12)°" — B (—1) X% A2 = 0
are prime. Really

(_)\2 _|_M2>2n _ 5(_1)j /\qu4n—2j

m (_)\2 —i—,uQ)Qn_l _ 5(—1)j )\2j71u4n72j
Since ( # 0, then

3 (_1)3’ )\2jlu4nf2j _ (_1)j+1 B2j722‘7_nlu4n72j (_)\2 4 MQ) '

Hence, for 3 # 0 we have
J 9
N = :
om—

Substituting this expression into the first equation, we have

. 2n . 27
J 2 2 j j J dn—2j§ 2§ —2n
=0G(-1) (-1 Tn¥ = B =d;".
(zn—j“ +u) B(=1) (-1 (2n_j) I = 8 =d,,

Thus, ; (d/dt; 5; A) = 0 has a general solution of the form

n+s
itA
U (t) = E e’ cj, ¢ € H2n+5_1/2,

j=1
where 71 = &1, 70 = &9, .., Ts = &6, Tsr1 = W1, ..., Tsrn = W,. Here we assume
the initial conditions ™ (0) =0, v =0,n — 1 and u® (0) = A?~2¢, we
get a system of equations

n+s

v AV o
E 7 A% = &,
Jj=1
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where év =0, v =0,n— 1: v = A2+ v 12 v =n2n+s—1or

n+s
ZTJ'-’CJ- =A"%v, v=02n+s—1.
j=1

Having solved this system we easily get the vector ¢;. The lemma is proved.
Corollary. The coefficients of the polynomial 1; (X; B; A) satisty the fol-

lowing conditions

N . . m# ]
An (B) = Z Wnrj (B) v (B) =4 =0, m=j
e c— 3, m=0,2n—1,

where

cp — 2n=) (2n—ir)”...(2n—m+1)'

The proof of this corollary follows from the expansion (89) by comparing
the coefficients of the same degress of .
Lemma 2.2.For all u(t) € W' (R,; H) it holds the equality

2n 2n
| Pou (t) HI2/V25(R+;H) = q:ZOAqHA2n_q+S“(q) Hiz(R+;H)+lZO A HA%_Z“(HS) Hig(m;m_

(QoP, P),2n+s where

Pﬂl pIO’Q...PIO’QH 0...0 m
P, PJ,..P),, 0.0

QO = P20n,1 P20n,2"’P20n,2n 0...0 +
0 0... 0 0...0

\S’/ 0 0 P20n,2 PQn 2n—1 P2n 2n
P)o= )" (-1)"0;5.0 1<r<j<n; P° =P 1<j<r<n
g j+vVr—v—1, = J ’ j.r R J —
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~ - cm q=12m
A = 1) 0,0, O = "
D i

V=—00

Proof. Let u (t) € W™ (R, ; H).Then, obviously

Poul)} a (- L) 2 - AQn(S)Q
H OUHWQS = H (_ﬁ + ) U . + H (_ﬁ + ) Uu . =
n 2 n 2
— Z CgAQn*Qq“u(q) + Z CgA%quu(?qus)
q=0 Lo 9=0 Ly
2n 2 2n 2
_ Z QqA2n—2q+su(q) + Z QqA2n—2qu(q+s) (92)
q=0 Lo q=0 Lo
where
0 - cr. qg=2m, m=0,n
! 0, q 7 2m '
On the other, using the results of the paper [1] we have
2n 2 2n ~ 9
‘ S QuAT || =3 A (R, o)y
q=0 Lo q=0
2n 2 2n ~ 9
D QAN =N DA AP~ (Rods, By) ran
q=0 Lo q=0
where
H"=He . 6H, A=Y (=1)"0 05, (=0, 5<0, s>2n),
2n V=-—00

Ro=(p),), 1<j<r<2n, @ = (&"""u(0), v=02n—T1,
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By = (AT 20 (0)) =020 — 1.

Thus we proved the lemma
Lemma 3.2.For all § € [0;d,?") and u(t) € W3 (Ry; H) it holds the

2n,j
inequality

1 (d/dt; B; A)uw ()55 + (@5 (B) B @) yanss =

2 (93)
= HP0“HI2/V2S - 5"142”7]“(])”12/1/;

where Q; (8) = M; (8) — Qo, My (8) = (mj, (3);2Ly, myr (B) = ma; (0),
7 <71 and Qq is determined from lemma 3.2.
Proof of this lemma follows from simple calculations used in the paper [2],
definition of A; (8) and corollary of lemma 3.2.

It holds

Theorem 3.1.The operator Py, determined in the form

Pou (t) = Py (d/dt)u (t) = (—d— + AQ) u(t), wu(t)e WQQO”H (Ry; H)

dt?
o 2n+s
realzies an isomorphism between the spaces Wy (Ry; H) and W3 (Ry; H).
o 2n+s

Proof. Let’s consider the equation Pou =0, W,  (R4; H), i.e.

u” (0)=0, v=0,n—1. (95)

Obviously, equation (94) has a general solution in the form

up () — e [fo +tAG + .+ tn_lAn_lﬁn—l}a §0s s En1 € Hopys1/9.

It follows from condition (95) that (v =0, v = 0,n — 1, i.e. ug (t) = 0. On
the other hand, it is easy to see that a theorem on intermediate derivatives [2]

yield
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2

2n
Z O%AQn—mu(m)

m=0

Pl = < constlfulfy;

w3

Now, let’s show that the equation Pyu = f is solvable for all f(t) €
Ws (Ry; H), u(t) € Wi (Ry; H). As first we consider the equation

Py (d/dt)u(t) = (—% +A2) a(t)=f(t), teR=(—o0,400), (96)

where

ro={00

Show that equation (96) has the solution @ (t) € W2"* (R,; H) that sat-
isfies it for all ¢ € R. Really, by means of the Fourier transformation we
get

oo

(t) = %/ (EPE?+ A*) " f()elde, teR.

—00

Obviously

2

+

A
H/I}/H?A/QQH_"S _ Ha(szrS)Hig + HAQnJrsa (S)Hiz = ”(—25)2”"'5&(6)
Lo

2

H—H

—l—HA2n+sa (S)Hi2 < ilelgng% (£2E + A2>—n 2

2
+sup (97)
€ER

’AQn (§2E—|—A2)_n 2

H—H

On the other hand, for £ € R
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’52" (2B + A?)” ’ = sup 2n(£2+u2)*n <1

peo(A)
and

HA2n £E+A2 H = sup M2n (§2+,U/2)_n S 1

neoa(A)
Therefore, it follows from inequality (97) that
9 N ’ N ? 112
ol = €7 @)+ |4F(E) = 70

2 2

Consequently 7 (t) € W3¢ (Ry; H). Denote contraction of @ (t) in R, =
[0,00) by v (t). Then, obviously v (t) € Wy""* (R,; H). Now, let’s look for

the solution of the equation

in the form
u(t) =v(t) +e ™ (6o + A& + ..+ t”_lA”_lgn,l] ,

where &y, ...,§n—1 € Hapys—1/2. Hence we can easily find in a unique way

all &, k = 0,n — 1 from the initial conditions «*) (0) = 0, v = 0,n — 1.
o 2n+s
Since the mapping W,  (Ry;H) — W (Ry; H) is continuous and one- to-
one, then it follows fro2m the Banach theorem that there exists the inverse
o 2n+s

Pyt W5 (Ry; H) =W, (Ry; H). The theorem is proved.

3.3. The basic result

It follows from the theorem on intermediate derivatives [2] that for
u(t) € W™ (Ro; H)

HAzn Jy ) < constHUH?,V;nH(m-H)'

() i) <
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On the other hand, it follows from theorem 3.1. that the norms HPOu]|W22n+s (R:H)
o 2n+s
and HU||W22n+S(R,H) are equivalent on the space W, (Ry; H) ie.

cillullyzns < N[ Poullyzs < callullyznss, (e, 02> 0).

Then the theorem on intermediate derivatives [2] gives that the following

numbers
]if(-S) (Ry;H) = sup HAQ”*ju(j)(t)H

1 . —_—
j up |]p0uHW2S(R+;H), j=1,2n-1
OFu(t)EW, (Ry;H)

W3 (R4 H)

o (s)
are finite. Now, let’s prove a theorem on finding the numbers N (Ry; H),

j=1,2n—1.
Theorem 3.2.1t holds the equality

o () By 1f detQ (B; {v})2) # 0, B € [0,dy2
N; (ReH) =1 i ) )
u2n,j i the contrary case,

where () (R; {V}Z;é) is a matriz obtained from Q (3) by rejecting the first n
0—1/2
rows and columns, and fty, ; s the least root of the equation det Q) (ﬁ; {I/}:;é)

0 from the interval [O, dQ_nQ’;)

Proof. In the previous section the proved that in the space WZ"ts (Ry; H)

the numbers

o (s)
N

_ mn

i 1

B L [P 0 e S
0Au(t)eWZ" s (R;H)

Then, obviously, in the space

o 2n+s

W (R+;H; O,2n+s—1):

- {u/u € W2 (Rys HY, u” (0)=0, v=0,2n+s— 1}

the numbers

o (s)
N, (Ry;H; 0,.2n+s—1)=d

J 2n,j
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Really, if Jif = d} . then for Ve > 0 we can find such a finite function

2n,j

v (t) € W (Ry; H)that v. (t) = 0, [t| >0 (¢ > 0) therefore

[P (d/dt) UEHW%(RJr :H) (d2_nj + 5) HA% JU HW% (Ry;H) <&

o 2n+s

Then assuming ¥, (t) = v- (t —2N) €W,  (R4;H;0,2n — 1) we see that

1Po (d/dt) OellSyge gy sory — (s +€) || AP 709 e, (98)

s <

follows from the last inequality. On the other hand, it follows from lemma 3.3.
o 2n+s

that for all w €W, it holds

2 n—j. ()12
| Po (d/dt) wllfysecr, iy = BIA™ 4 s o

Passing to limit as § — d; 2" from the last inequality we get

2n,j

o (s) - @@
N; (Ry;H;0.2n+s—1) >dy) (99)

2n,5°

It follows from (98) and (99) that

o (s)

N, (RyH)=d;" (100)

2n,j

o 2n+s o 2n+s

Since W, (R4 H;0,2n+s—1) CW,  (R4; H) obviously

o (s) o (s)
N; (R H) >dy,'; =N,

J 2n,j

(RJr; H;m) )
Further, it follows from lemma 3.3 and equality (93), that
Q (B: {v}oZo®: @) yans > 0,
then
19/t 5 A)ulfs + @ (5 (711286, 8) s = I Pl = B4, > 0,

Passmg to limit at the first part of the last relation w have that for all
o 2n-+s

u €W, (Ry; H) it holds the inequality

[ A*" HW@?(R+;H) 2”]"P0u"WS(R+ o
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ie.

o (s) o (s)

N; (R H) < dy,';. But since N; (Ry; H) > dy,'; then hence it follows
that N\ (Ry; H) = dy?; it Q (8; {v}3™") > 0 for B € [0,d3>"). On the other

o () o (s) -
hand obviously, N, (R4 H) > dy,)'; therefore(Nj (R+;H)) € (0;d57").

2n,j

o (5) -2
Show that for 3 € <O; (Nj (Ry; H)) )

Q (B:{v}y ") >0.

o (s) —2
Really, for 3 € (0; (Nj (R+;H)) )
o (5) -2
I (d/dt: 3 A)ully; +Q (B vHZ08,8) = Poully (1 -0 (Nj <R+;H>) ) > 0.

Then, applying lemma 3.1 we get that for the solution of the Cauchy prob-
lem for all ¢ it holds the inequality

Q (B;: (v} 2@, @) > 0,

o (s) -2
ie. for B € (0; (Nj (R+;H)) > the matrix Q(ﬁ; {V}Z;é) > 0. Thus

o (s)
N

J

0. On the other hand, if Q (3;{v}'Z;) > 0 for all 8 € [0,d5), then

2n,j
o (s) o (s)
N; (Ry; H) < dy? therefore N; (Ry; H) € (dy;). Then for

(Ry; H) = dy2if Q (B; {v}iZ;) > 0 and this means that det Q (8; {v}'—,) #

2n,j

o () -2 o (5)
g e (Nj (Ry; H)) ; d_2"> from the definition of the number N, (R; H)

anj
it follows that there exists such wg (t) vector-function that

. (12
Py (/w3 < 6| 42w

w3

o (s) -2
Then, it follows from lemma 3.3. that for g € ((Nj (Ry; H)) ;d%i?)

1 (d/dt; 6; A) wslly + (Q (B {v} %) ,2) <0.
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o (s) -2
Consequently, for 5 € ((Nj (Ry; H)) ?d2712,?>

(Q (B: {v}iZy) @5 5) < 0.

[}

—2
Thus, the \; () least eigen value changes its sign for fy = | N ;S) (Ry; H )) :

Since this point is the last root of the equation det () (B; {V}Z;é) = 0, the the-
orem is proved.

Now, let’s formulate a theorem on solvability of the problem (85), (86).
Theorem 3.3. Let A be a self-adjoint positive- definite operator, the operators
Bj = AjA™ and Dy = A*A;AZUT) (j=T1,2n—1) be bounded in H and it
hold the inequality

2n—1 o (5)
o= 3" ma (| Bouey | Danss| N, (ReiH) ) <1
j=1

o (s)
where the numbers N; are defined from theorem 3.2. Then for any t € Ry
there exists a vector-function u (t) € W3"** (R; H) that satisfies the equation
(85) for all f(t) € W3 (R; H) and boundary conditions in the sense of con-

vergence

Pi% Hu(y) H2n+371/71/2 -

0, v=0,n-1
and it holds the inequality Hu||W22n+S(R+;H) < const Hf||W25(R+;H) :
The proof of this theorem word by word repeats the proof of the theorem

from the previous section and we don’t cite it here.
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