Novel Applications of VDVTA:

As Current-Mode SIMO-Type Biquad and

Electronically Controllable Sinusoidal Oscillator

Javed Ahmad
Dept. of Electronics and Communication Engineering
MAIT, Sector-22, Rohini, New Delhi, India

Dinesh Prasad
Dept. of Electronics and Communication Engineering
Jamia Millia Islamia, New Delhi, India

Copyright © 2015 Javed Ahmad and Dinesh Prasad. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we present new applications of voltage differencing voltage transconductance amplifier (VDVTA) as current-mode (CM) biquad filter and electronically controllable sinusoidal oscillator (ECSO) using single VDVTA and with four passive components, three passive components respectively. The biquad circuit realizes low pass, high pass, and band pass filter simultaneously without changing the circuit topology. The oscillator circuit also enjoys the explicit current output and also the frequency is electronically controllable. The active and passive sensitivities for both circuits are very low. Both the circuits are simulated using PSPICE with TSMC CMOS 0.18 µm process parameter

Keywords: VDVTA, CM biquad filter, Electronically Controllable Oscillator

1 Introduction

Due to longer dynamic range and wider bandwidth the current mode (CM) application is more popular as compare to voltage mode (VM) counter parts [1]. Now days the main focus of researcher is to use single active element/ building block
based single input multi output filter and electronically controllable oscillator see [3-21] and the references cited therein. There are many active building block has been represented by BIOLEK, SENANI, BIOLKOVA, KOLKA, in [2]. The multi function filter is more flexible because the same circuit structure can be used for different filter responses. Single Input Multiple Output (SIMO) type filter using different active building block are available in the literature see [3-10]. Sinusoidal oscillator find a number of application in communication, signal processing, control system, instrumentation and measurement system [11-13]. ECSOs based on different active building blocks are available in the literature see [14-21] and the reference cited therein. The advantages and applications of the active building block used in this paper are available in the literature [22-23]. However to the best knowledge and belief of the authors SIMO CM biquad as well as ECSOs using single VDVTA have not been yet presented in the open literature so for.

The purpose of this paper is to propose a new SIMO-type CM biquad and ECSOs using single VDVTA along with bare minimum passive components. The active and passive sensitivities for both the circuits are very low. Both the circuits are simulated using PSPICE with TSMC CMOS 0.18 µm process parameter.

2 The Proposed Configuration

The VDVTA is a recently proposed in [23]. Fig. 1 shows the symbolic representation VDVTA, where P, N and V are input terminals and Z, V, X+ and X- are output terminals. All the terminals of VDVTA are high impedance terminals.

![Symbolic representation of VDVTA](image)

The terminal current voltage relationships of VDVTA can be given by following set of equations:

\[
I_z = g_{m_1} (V_p - V_n)
\]

\[
I_{x+} = g_{m_2} (V_z - V_v)
\]
\[I_{x^-} = -g_{m_2} (V_z - V_v) \]

(3)

Fig. 2 Proposed SIMO-type CM- Biquad

Fig. 3 Proposed CM- Electronically Controlled Sinusoidal Oscillator

The routine circuit analysis of Fig. 2 yields the following filter transfer functions of the universal filters:

\[T_1(s)\bigg|_{HP} = \frac{I_{o1}}{I_{in}} = \frac{s^2}{D(s)} \]

(4)

\[T_2(s)\bigg|_{BP} = \frac{I_{o2}}{I_{in}} = -\frac{\left(\frac{g_m}{C_1}\right)}{D(s)} \]

(5)
Where
\[
D(s) = s^2 + \frac{s}{C_1} \left(\frac{1}{R_1 + g_m} \right) + \frac{g_m g_m}{C_1 C_2}
\]
(7)

The natural frequency \(\omega_0\), BW and quality factor \(Q_0\) are given by:
\[
\omega_0 = \sqrt{\frac{g_m g_m}{C_1 C_2}}
\]
(8)
\[
BW = \frac{1}{C_1} \left(\frac{1}{R_1 + g_m} \right)
\]
(9)
\[
Q_0 = \frac{\frac{g_m g_m C_1}{C_2 \left(\frac{1}{R_1 + g_m} \right)^2}}
\]
(10)

A routine circuit analysis of Fig. 3 shows the following characteristic equation:
\[
S^2 + S \frac{1}{C_2} \left(\frac{1}{R_2} - g_{m2} \right) + \frac{g_{m1} g_{m2}}{C_1 C_2} = 0
\]
(11)
Thus the condition of oscillation (CO) and frequency of oscillation (FO) are given by
\[
\left(\frac{1}{R_2} - g_{m2} \right) \leq 0; \omega_0 = \sqrt{\frac{g_{m1} g_{m2}}{C_1 C_2}}
\]
(12)
Therefore, it is seen that CO is controlled by resistance \(R_2\) and FO is electronically controllable by transconductance \(g_{m1}\).

Using sensitivity formula \(S_x^f = \frac{x \partial F}{F \partial x}\), the active and passive sensitivities of \(\omega_0\) with respect to each elements are found to be \(-\frac{1}{2}\).

3 SPICE Simulation Results

To confirm the theoretical analysis, the proposed circuits have been simulated using CMOS VDVTA circuit of Fig. 3 [23]. The passive component values used for SIMO-type CM biquad as shown in Fig. 2 were \(C_1 = 0.005\text{nF}, C_2 = 0.01\text{nF}\) and \(R_1 = 1.583\text{k}\Omega\) and for sinusoidal oscillator as shown in Fig. 3 were
C_1 = 0.01nF, C_2 = 0.01nF and R_1 = 1.678kΩ. In all the simulations the bias voltage of VDVTA are ± 0.9 volts D.C with bias currents I_{B1} = I_{B2} = I_{B3} = I_{B4} = 150µA. The simulated frequency response of filter given in Fig. 2 is shown in Fig. 4. The transient response, steady response and the output spectrum of the sinusoidal oscillator of Fig. 3 is shown in Fig. 5. The comparison of circuit shown in Fig. 3 with other available ECSOs is shown in Table 1. These results, thus, confirm the validity of the proposed biquad and oscillator circuits.
Fig. 5 (a) Transient output waveform, (b) Steady state response of the output and
(c) Simulation result of the output spectrum of Fig. 3

Table 1

<table>
<thead>
<tr>
<th>Reference</th>
<th>Active Component</th>
<th>Grounded Capacitors</th>
<th>Floating Capacitors</th>
<th>Resistor s</th>
<th>Availability of Explicit current-mode output</th>
<th>Electronic Tunability</th>
</tr>
</thead>
<tbody>
<tr>
<td>[16]</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>[17]</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>[18]</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>[19]</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>[20]</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>[21]</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Proposed</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

4 Conclusion

Two new applications of voltage differencing voltage transconductance amplifier
are proposed in this paper one is current mode SIMO–type universal biquad and
second is electronically controllable sinusoidal oscillator using single active
building block. The proposed filter realizes second order low pass, band pass, and
high pass filters simultaneously. The other proposed oscillator circuits offers (1)
independent control of FO and CO, (2) use of grounded capacitors which is
desirable from the viewpoint of IC implementation, (3) availability of explicit CM
output and (4) low active and passive sensitivities. Both the circuit offers low
active and passive sensitivities of ω_0. SPICE simulations have established the
workability of both the circuits.
Novel applications of VDVTA: As current-mode SIMO-type biquad

Acknowledgements. This work was performed at the Advanced Analog Signal Processing Laboratory of the Department of Electronics and Communication Engineering, F/O Engineering and Technology, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025, India.

References

Novel applications of VDVTA: As current-mode SIMO-type biquad

Received: September 17, 2015; Published: October 26, 2015