Harmonic Wave Excitation in a Semi Infinite Medium

V. G. Gupta and Kapil Pal*

Department of Mathematics, University of Rajasthan, Jaipur-302004, India
guptavguor@rediffmail.com; *palkapiluor@yahoo.co.in

Copyright © 2013 V. G. Gupta and Kapil Pal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In the present paper, we obtained the most general solution of the one-dimensional partial differential equation for harmonic wave excitation in a semi infinite medium, by computing the symmetry groups using the general prolongation formula for their infinitesimal generators of a groups of transformations based on the technique given by Olver([4], [5]) in explicit form. In the recent year the authors Bao, Wei and Zhao [1], Kurus [3], Ramahi and Seydou [6], Ranosava [7] Sneddon and Read [8] worked for the solution of Helmholtz equation.

Keywords: Axial Displacement, Wave Number, Commutation-Relation

1. Introduction

1.1 The harmonic wave excitation problem in a semi-infinite medium:

The harmonic wave excitation problem in a semi-infinite medium the governing equation is the Helmholtz equation in the standard form as

\[u_{xx} + k^2 u = 0 \quad (1.1.1) \]

Where \(u \) is an axial displacement of the rod and \(k \) is the wave number, [2].

2. Main Result

Let us consider one-dimensional Helmholtz equation for harmonic wave excitation in a semi-infinite medium

\[u_{xx} + k^2 u = 0 \quad (2.1) \]

which is the second order differential equation with one independent variables and one dependent variable.
Lemma 1: Let

\[v = \xi(x, u) \frac{\partial}{\partial x} + \phi(x, u) \frac{\partial}{\partial u} \]

(2.2)

be a symmetry of Helmholtz equation (2.1). Then the smooth coefficient functions \(\phi \) and \(\xi \) are given by \(\phi = \beta u + \alpha \) where \(\alpha = \alpha(x) \) and \(\beta = \beta(x) \) are functions and \(\xi \) independent of \(u \).

Proof: Firstly we determine the second prolongation of \(v \) (see Oliver[5]),

\[pr^{(2)}v = v + \phi^x \left(\frac{\partial}{\partial u_x} \right) + \phi^{xx} \left(\frac{\partial}{\partial u_{xx}} \right) \]

(2.3)

By using infinitesimal criterion of invariance the equation (2.1) takes the form

\[\phi^{xx} + k^2 \phi = Q \left(u_{xx} + k^2 u \right) \]

(2.4)

where \(Q(x, u^{(2)}) \). By substituting the values of \(\phi^{xx} \) and \(\phi \) in equation (2.4) and equating the coefficients of the terms in the first and second order partial derivatives of \(u \), the determining equations for the symmetry group of the one-dimensional Helmholtz equation are found as follows see Table 1

<table>
<thead>
<tr>
<th>Monomial</th>
<th>Coefficient</th>
<th>Equation Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\phi_{xx} + k^2 \phi - k^2 Qu = 0)</td>
<td>1</td>
</tr>
<tr>
<td>(u_x)</td>
<td>(2\phi_{xx} - \xi_{xx} = 0)</td>
<td>2</td>
</tr>
<tr>
<td>(u_x^2)</td>
<td>(\phi_{xx} - 2\xi_{xx} = 0)</td>
<td>3</td>
</tr>
<tr>
<td>(u_x^3)</td>
<td>(-\xi_{xx} = 0)</td>
<td>4</td>
</tr>
<tr>
<td>(u_{xx})</td>
<td>(\phi_x - 2\xi_x = Q)</td>
<td>5</td>
</tr>
<tr>
<td>(u_x u_{xx})</td>
<td>(-3\xi_x = 0)</td>
<td>6</td>
</tr>
</tbody>
</table>

The requirement for equation (6) is that \(\xi \) independent of \(u \), equation (3) gives \(\phi = \beta u + \alpha \) where \(\alpha = \alpha(x) \) and \(\beta = \beta(x) \) are functions.

Lemma 2: The most general infinitesimal symmetry of the one-dimensional Helmholtz equation in a semi-infinite medium has coefficient function of the form \(\xi = c_1 \) and \(\phi = (c_2 / k^2) u + \alpha \) where \(c_1 \) and \(c_2 \) are arbitrary constant and \(\alpha \) is an arbitrary solution of the Helmholtz equation.

Proof: Using lemma 1, the equation (1) gives \(\beta = Q \), form the equation (5) we found \(\xi = c_1 \) and from equation (2) we get \(\beta_x = c_1 / k^2 \). Thus most general infinitesimal symmetry of the one-dimensional Helmholtz equation in a semi-infinite medium has coefficient function of the form \(\xi = c_1 \) and \(\phi = (c_2 / k^2) u + \alpha \) where \(c_1 \) and \(c_2 \) are arbitrary constant and \(\alpha \) is an arbitrary solution of (2.1)
Lemma 3: The Lie algebras of infinitesimal symmetries of the Helmholtz equation in a semi-infinite medium is spanned by the two vector fields $v_1 = \partial_x$, $v_2 = (1/k^2) u \partial_u$ and the infinite-dimensional sub-algebra $v_\alpha = \alpha \partial_u$ where α is an arbitrary solution of the Helmholtz equation.

Proof: The proof is evident by using lemma 1 and lemma 2.

Theorem 1: The symmetry Lie algebra \mathfrak{g} of the Helmholtz equation in a semi-infinite medium is spanned by the set of vector field v_1, v_2 and v_α.

Proof: Using lemma 3, the commutation relation between these vector fields are given by the following see Table 2

<table>
<thead>
<tr>
<th></th>
<th>v_1</th>
<th>v_2</th>
<th>v_α</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>0</td>
<td>0</td>
<td>v_α</td>
</tr>
<tr>
<td>v_2</td>
<td>0</td>
<td>0</td>
<td>$-\left(1/k^2\right) v_\alpha$</td>
</tr>
<tr>
<td>v_α</td>
<td>$-v_\alpha$</td>
<td>$(1/k^2) v_\alpha$</td>
<td>0</td>
</tr>
</tbody>
</table>

by using commutation-relation table it is easy to derive \mathfrak{g} is a Lie algebra with Lie bracket operation.

Lemma 4: The one-parameter groups G_i ($i=1,2,\alpha$) generated by the v_i are given as follows G_1: $(x + \varepsilon, u)$, G_2: $(x, e^{\varepsilon/k^2} u)$, G_α: $(x, u + \varepsilon \alpha)$ where each G_i is a symmetry group.

Proof: The one parameter group generated by v_i is given by $\exp(\varepsilon v_i)(x, u) = (\tilde{x}, \tilde{u})$, so by using lemma 3 it is obvious.

Theorem 2: The solution of Helmholtz equation by using its different symmetry groups are given by $u^{(1)} = f(x - \varepsilon)$, $u^{(2)} = e^{\varepsilon/k^2} f(x)$, $u^{(\alpha)} = f(x) + \varepsilon \alpha$ where $u = f(x)$ be an assume solution to the Helmholtz equation, ε is any real number and α any other solution to the Helmholtz equation.

Proof: Putting the value of x and u in solution $u = f(x)$ and using $(x, u) = (\tilde{x}, \tilde{u})$ for each G_i and using lemma 4 we get the above function which are the solution to the Helmholtz equation.
3 Conclusion

In our investigation the symmetry group G_2 and G_{α} reflects the linearity of the Helmholtz equation. The group G_1 is space translation symmetry group. At the end the most general solution that we can obtain from a given solution $u = f(x)$, by group transformations is in the form given below

$$u = e^{(\varepsilon_1/\varepsilon_2)}f(x - \varepsilon_1) + \alpha$$

(3.1)

where ε_1, and ε_2 are real constant and α be an arbitrary solution to the one-dimensional Helmholtz equation for the harmonic wave excitation in a semi-infinite medium. The most general solution (3.1) gives us all possible most general infinitesimal symmetries of Helmholtz equation (2.1).

4 Special Case

If we take $k = 1$ then equation 3.1 reduces to

$$u = e^{\varepsilon_2}f(x - \varepsilon_1) + \alpha$$

(4.1)

where ε_1, and ε_2 are real constant and α be an arbitrary solution to the one-dimensional Helmholtz equation for the harmonic wave excitation in a semi-infinite medium.

References

www.elsevier.com/locate/advengsoft

Received: June, 2011