Prognostic Value of Endothelial Function for Ischemic Heart Disease in Patients with Hypertension

Valentyn Mochonyi

State Institute «Zaporizhzhia Medical Academy of Postgraduate Education of Ministry of Health of Ukraine», Ukraine

Copyright © 2016 Valentyn Mochonyi. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Aim of the study is to determine the predictive value with respect to the development of coronary heart disease (CHD) of endothelial function activity, inpatients with hypertension (HT) stage II.

Methods: We examined 180 patients (men and women) with documented HT stage II. All surveyed people were divided into two groups: the first group consisted of 130 primary HT patients stage II without CHD, the average age of 56.5±0.5 years; a second comparison group - 50 patients with CHD combined with HT II stage, average age of 58.1±0.8 years.

Results: The results of the ROC-analysis showed significantly higher (AUC = 0.80) (95% CI AUC 0.734-0.856) predictive total index of NO₂+NO₃ in the development of coronary artery disease in hypertensive patients, with an optimal distribution of the threshold of <20.7 mkmol/l sensitivity was 90.0 % and specificity - 55.4 %. The high sensitivity (88.0%), to the development of coronary artery disease in hypertensive patients was significantly (AUC = 0.84) ∆V100rg, found at the point of separation of< 88% specificity was 66.2%.

Keywords: ischemic heart disease, hypertension, prediction, endothelial function

Introduction

Coronary heart disease (CHD) is one of the most common and dangerous pathologies, it is considered the most common cause of sudden death [1]. One of
the urgent problems of modern cardiology is atherosclerosis (AS) [2]. One of the risk factors for the development of the AS can act hypertension [3]. The emergence of an endothelial dysfunction contributes to the development of vascular disorders, which are the basis of atherogenesis, which leads eventually to the formation and destabilization of atherosclerotic plaques and the development of cardiovascular complications. There exists the need to create a system for early detection of cardiovascular risk in this connection is constantly searching for biomarkers, the determination of which would be more likely to obtain information about the formation of cardiovascular disease in the preclinical stage [4].

Material and methods

The study is based on a survey of 180 full machining patients (51 men and 129 women) with documented II stage HT with grade 2-3.

Criteria for inclusion in the study: patients’ age 40 to 65 years; HT stage II with grade 2-3.

Criteria for exclusion from the study: verified of CHD; heart failure (HF) III-IV degree of NYHA; hormonally active disease; kidney disease; symptomatic arterial hypertension; diseases of the central nervous system (CNS); oncological diseases; clinically significant disease, according to researchers, may directly or indirectly affect the quality of research; the refusal of the patient from the study.

The patients were divided into two groups: the first group consisted of 130 primary hypertensive patients stage II without coronary artery disease, the average age of 56.5 ± 0.5 years; a second comparison group - 50 patients with HT II stage, verified with the CHD, the average age of 58.1 ± 0.8 years.

The patient groups were comparable in age, the average systolic (SBP) and diastolic blood pressure (DBP), as well as the average duration of HT in both groups.

Coronaroventriculography (CG) being accessed by the method of M. Judkins.

The level of final nitrogen metabolites in blood plasma was determined by method, based on the recovery nitrate to nitrite determination of nitrite by the reaction using reagent Gris. Optical density was measured spectrometer SF-46 at a wavelength of 540 nm. Quantification was performed by nitrite calibration schedule that is built on nitrite nitrogen.

Endothelium dependent vasodilation (ΔV100rg, %) was studied using complex rheographic ReoCom Professional (HAI-Medica, Ukraine). Sample of reactive hyperemia was performed according to the study protocol for modification IM Fushtey, 2011. [9]

Statistical analysis of the results

Statistical analysis was performed using the application PSPP (version 0.7.9, the license GNU GPL). The adequacy of mathematical models was evaluated by
the method of constructing and analyzing the curves of operating characteristics (ROC - Receiver Operating Characteristic curve), with the calculated area under the ROC-curve (AUC - Area under the ROC curve)) and its 95% confidence interval, sensitivity (Se), specificity (Sp), the likelihood ratio for positive (+LR) and negative (-LR) results. The cut-off point was found using the J-Youden index. [5]. In order to compare AUC method was used overlapping confidence intervals.

Results

In order to determine the diagnostic value of coronaroventriculography ROC-analysis was used to calculate the data set, we used two groups of hypertensive patients without coronary artery disease (n = 130) and ischemic heart disease combined with HT (n = 50). According to our data it was coronaroventriculography Se 92,3% and Sp 91,9% at AUC = 0,92 (95% CI 0,836-0,970), positive likelihood ratio = 11,38 and negative likelihood ratio = 0,084. This method of diagnosis of CHD has been selected as the standard. Identification of possible markers of endothelial dysfunction in relation to the development of coronary artery disease in patients with HT stage II using ROC-analysis was determined by their diagnostic value, the results are presented in Table. 1.

Table 1. Predictive value of markers in relation to the development of coronary artery disease in patients with stage II hypertension (n = 180)

<table>
<thead>
<tr>
<th>The indicator</th>
<th>Cut off</th>
<th>Se, %</th>
<th>Sp, %</th>
<th>AUC</th>
<th>95% CI AUC</th>
<th>+LR</th>
<th>-LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₂, mkmol/l</td>
<td><5.2</td>
<td>46.0%</td>
<td>91.5%</td>
<td>0.76</td>
<td>0.688-0.818</td>
<td>5.44</td>
<td>0.59</td>
</tr>
<tr>
<td>NO₃, mkmol/l</td>
<td><13.6</td>
<td>92.0%</td>
<td>46.2%</td>
<td>0.73</td>
<td>0.658-0.792</td>
<td>1.71</td>
<td>0.17</td>
</tr>
<tr>
<td>NO₂+NO₃, mkmol/l</td>
<td><20.7</td>
<td>90.0%</td>
<td>55.4%</td>
<td>0.80</td>
<td>0.734-0.856</td>
<td>2.02</td>
<td>0.18</td>
</tr>
<tr>
<td>ΔV100rg, %</td>
<td><88</td>
<td>88.0%</td>
<td>66.2%</td>
<td>0.84</td>
<td>0.782-0.893</td>
<td>2.60</td>
<td>0.18</td>
</tr>
<tr>
<td>Coronarography</td>
<td>-</td>
<td>92.3%</td>
<td>91.9%</td>
<td>0.92</td>
<td>0.836-0.970</td>
<td>11.38</td>
<td>0.084</td>
</tr>
</tbody>
</table>

The level of NO₂ significantly (AUC = 0.76) had at the optimum point distribution <5.2mkmol/l (sensitivity 46.0% and specificity of 91.2%), for the development of coronary artery disease in patients with HT stage II. The optimum point for separation the level of NO₃ significantly (AUC = 0.73), according to the
ROC-analysis was <13.6 mkmol/l (sensitivity 92.0% and specificity - 46.2%. The results of the ROC-analysis showed significantly higher (AUC = 0.80) (95% CI AUC 0.734-0.856) predictive total index of NO2+NO3 in the development of coronary artery disease in hypertensive patients, with an optimal distribution of the threshold of <20.7 mkmol/l sensitivity was 90.0 % and specificity - 55.4 %. The high sensitivity (88.0%), to the development of coronary artery disease in hypertensive patients was significantly (AUC = 0.84) ΔV100rg, found at the point of separation of< 88% specificity was 66.2%.

The highest AUC had levels of NO2+NO3 and ΔV100rg. Just for these indicators was the intersection with the 95% CI AUC coronaroventriculography, respectively CG AUC = 0.92 (95% CI 0.836-0.970) vs NO2+NO3 AUC = 0.80 (95% CI 0.734- 0.856) and vs ΔV100rgAUC = 0.84 (95% 0.782-0.893).

Discussion

In scientific studies revealed that the endothelial dysfunction involved in the processes of formation are related to the formation of the AS and coronary artery disease. The idea that endothelial dysfunction are involved in the pathogenesis of coronary heart disease is not new, but markers of inflammation as a component of the current state of the disease are poorly understood. In the study of mechanisms of pathogenesis HT in recent years, more attention is paid to research of endothelial function, in violation of the antioxidant defense system [6].

Therefore, interested in the possibility of the use of endothelial dysfunction as a marker for coronary artery disease in hypertensive patients. Today NO2\& NO3 is the most studied endothelial function markers [7, 8]. We assume that the higher level of endothelial dysfunction markers in patients with hypertension, more active are the local and systemic endothelial dysfunction in the coronary arteries, which can lead to the development of coronary artery disease [9, 10].

Non-specific indicators of endothelial dysfunction condition may be useful to detect latent flowing coronary heart disease in patients with hypertension, as well as evaluate the effectiveness of therapy, which requires further study.

Conclusions

1. Assessment of the severity of immune-inflammatory response by the ratio of ΔV100rgmay have predictive value with respect to the development of coronary artery disease in hypertensive patients.
2. To increase the sensitivity and specificity of the model prediction of CHD in hypertensive patients need to develop indicators of combinative using independent predictors that require further scientific research.

Acknowledgements. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
Ethical Declaration. The study was approved by the local ethics committee of State Institute «Zaporizhzhia Medical Academy of Postgraduate Education of Ministry of Health of Ukraine». The study was carried out in conformity with the Declaration of Helsinki.

References

[10] A. Berezin, Biomarkers for cardiovascular risk in patients with diabetes: Table 1, Heart, 102 (2016), 1939-1941. https://doi.org/10.1136/heartjnl-2016-310197

Received: December 15, 2016; Published: January 6, 2017