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Abstract 

 

This paper presents a mathematical model to investigate the nonlinear dynamic 
behavior of a high speed rotor-bearing system due to defects of rolling elements. 
Two defects have been considered for the study, one defect as off-sized rolling 
elements and other defect as rolling element waviness. In the formulation, the 
contacts between rolling elements and inner/outer races are considered as 
nonlinear springs and also used nonlinear damping, which is developed by 
correlating the contact damping force with the equivalent contact stiffness and 
contact deformation rate. The equations of motion are formulated using 
Lagrange’s equation, considering the vibration characteristics of the individual 
components such as inner race, outer race, rolling elements and rotor. The highest 
radial vibrations due to ball size variation are at a speed of the number of balls 
times the cage speed ( HzN cagebbp ωω = ). The other vibrations due to ball size 
variation are also occur at cagebp kωω ± , where k is a constant. Due to ball 
waviness, nonlinear dynamic responses are found to be associated mainly with 
wave passage frequency ( wpω ) and ball passage frequency ( bpω ) with their 
interactive effects. 
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Nomenclature 
 
 
kin  equivalent non-linear contact stiffness of the roller-inner race contact  
kout  equivalent non-linear contact stiffness of the roller-outer race contact 
kin-contact contact stiffness of the roller-inner race contact 
kout-contact contact stiffness of the roller-outer race contact 
mrotor mass of the rotor, kg 
Nb  number of balls 
∆dp  change in diameter of rolling element 
δin   contact deformation of the roller-inner race 
δout   contact deformation of the roller-outer race 
δθ  angular displacement due to off-sized rolling element 
ωcage  angular velocity of cage, rad/s 
ωinner  angular velocity of the inner race, rad/s 
ωouter angular velocity of the outer race, rad/s 
ωbp     ball passage frequency, Hz 
ωwp     wave passage frequency, Hz 
(Π)in   amplitude of the wave at inner race  
(Π)out    amplitude of the wave at outer race 
FFT  fast Fourier transformation 
BPF  ball passage frequency, Hz 
BPV  ball passage vibration, Hz 
WPF  Wave Passage Frequency, Hz 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

1 Introduction 
 

   An analysis of rolling bearing dynamic response is important to predict 
the system behavior. The rotor bearing assembly, which is supported by perfect 
rolling bearings, the vibration spectrum is dominated by the vibrations at the 
natural frequency and the ball passage frequency (BPF). The vibrations at this 
later frequency are called ball passage vibrations (BPV). The other vibrations are 
generated by geometrical imperfections of the individual bearing components and 
these imperfections are caused by irregularities during the manufacturing process. 
The imperfection such as surface waviness in the races developed during 
manufacturing process; produce significant vibrations in the system.  

Ball passage vibrations were first documented, by Perret [1] and Meldau [2] as a 
static running accuracy problem. Gad et al. [3] showed that resonance occurs 
when BPF coincides with frequency of the system and they also pointed out that 
for certain speeds, BPF can exhibit its sub and super harmonic vibrations for rotor 
ball bearing system. Rahnejat and Gohar [4] showed that even in the presence of 
elasto-hydrodynamic lubricating film between balls and the races, a peak at the 
BPF appears in the spectrum. They suggested that the limit cycle frequency and 
amplitude is affected by the number of balls, applied load and radial internal 
clearance. Wardle [5] theoretically and experimentally showed that ball waviness  
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produced vibrations in the axial and radial directions at different frequencies and 
also pointed out that only even orders of ball waviness produced vibrations. They 
also showed that the outer race waviness produces vibrations at the harmonics at 
outer race ball passage frequency.   

Aktürk et al [6] performed a theoretical investigation of effect of varying the 
preload on the vibration characteristics of a rotor bearing system and also 
suggested that by taking correct number of balls and amount of preload in a 
bearing untoward effect of the BPV can be reduced. Aktürk [7] presented the 
effect of surface waviness on vibrations associated with ball bearings and 
conclude that for outer race waviness most sever vibrations occur when the BPF 
and its harmonics coincide with the natural frequency. 

Harsha et al. [8] developed an analytical model to predict nonlinear dynamic 
response in a rotor bearing system due to surface waviness. The conclusion of this 
work shows that for the outer race waviness, the severe vibrations occur when the 
number of balls and waves are equal. In case of the inner race waviness, the peak 
amplitude of vibration can be at qωwp ± pωcage. For the waviness order iNb, peak 
amplitude of vibration and super-harmonic appear at the wave passage speed 
(ωwp). Harsha et al [9] have studied the stability analysis of a rotor bearing system 
due to surface waviness and number of balls. They suggested that the system 
express dynamic behaviors that are extremely sensitive to small variations of the 
system parameters, such as number of balls and number of waves. Harsha et al [10] 
have been studied the effects of ball waviness associate with rolling element 
bearing. The appearance of periodic, sub-harmonic, chaotic and Hopf bifurcation 
is seen theoretically. But he has considered only nonlinear stiffness.  

In this paper, a theoretical investigation is conducted to observe the effects of 
off size rolling elements and rolling element waviness with varying the number of 
balls on the vibration characteristics of a rotor bearing system. A nonlinear 
damping formula, correlating the contact damping force with the equivalent 
contact stiffness and contact deformation rate (determined by the surface profiles 
and radial speed of inner/outer races and rollers), is developed to improve model 
fidelity.  

 
 

 

2 Problem Formulations 
 
A schematic diagram of rolling element bearing is shown in Fig.1 (a). For 
investigating the structural vibration characteristics of rolling element bearing, a 
model of bearing assembly can be considered as a spring mass damper system. 
Elastic deformation between races and rollers gives a non-linear force 
deformation relation, which is obtained by Hertzian theory. In the mathematical 
modeling, the rolling element bearing is considered as spring mass system and 
rolling elements act as non-linear contact spring as shown in Fig. 1(b). Since, the 
Hertzian forces arise only when there is contact deformation, the springs are 
required to act only in compression. In other words, the respective spring force 
comes into play when the instantaneous spring length is shorter than its unstressed 
length, otherwise the separation between balls and the races takes place and the  
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resultant force is set to zero. The excitation is because of the varying compliance 
vibrations of the bearing which arise because of the geometric and elastic 
characteristics of the bearing assembly varying according to the cage position 
The rolling element bearing model considered here has equi-spaced balls rolling 
on the surfaces of the inner and outer races. For developing the theoretical model 
it is assumed that the outer race is fixed rigidly to the support and the inner race is 
fixed rigidly to the rotor and there is no bending of races.  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
Rr

r
rotorcage ωω   &  bp cage bNω ω= ×                   (1) 

Where, ωbp is the ball passage frequency and Nb is the number of balls. 
 
2.1 Rolling Element Waviness 
An important source of vibrations in ball bearings is waviness. These are global 
sinusoidal shaped imperfections on the outer surface of the bearing components as 
shown in Fig. 2 (a). Waves are described in terms of two parameters: the 
wavelength (λ), which is the distance taken by a single cycle of the wave and its 
amplitude (Π) as shown in Fig. 2 (b). The characteristic wavelengths of the 
imperfections are much larger than the dimensions of the Hertzian contact areas 
between the balls and the guiding races. The number of waves per circumference 
is denoted by the wave number. Waviness imperfections cause variations in the 
contact loads when the bearing is running. The magnitude of the variation 
depends on the amplitude of the imperfection and the nonlinear stiffness and 
damping in the contact. Imperfections with a different wave number cause 
vibrations at distinct frequencies, each with a characteristic vibration mode.  

Balls are free to spin about any axis and the axis may even change during 
the rotation. In order to calculate the waviness of balls, a simple case is considered 
where a ball with a perfectly sinusoidal wavy surface rotates about an axis as 
shown in Fig. 2 (a, b). The rolling element waviness causes a change in its 
diameter through contact with inner and outer races as  

( )iwpp Nad θsin2=Δ                        (2)  
Since, it is assumed that wave is sinusoidal; hence the amplitude of the rolling 
element waviness is, 
( ) ( )tNa erwperi .... sin2 ω=Π                    (3) 
 
2.2 Ball diameter variations 
 

When there are off-sized rolling elements in a rotor bearing system, this will cause 
an additional deflection differences. These differences can be larger or smaller 
than the rest, depending on the off sized rolling element diameter. Fig. 2 (c) shows 
that one ball has a greater diameter than the rest of balls in the set. Hence, for this 
off-sized rolling element, the equation of displacement of the jth rolling element 
becomes (assuming the inner and outer races are rigid) 

ΔΓ+= iδθδθ                             (4) 
Where, ΔΓ is the diameter difference of the off-sized ball.  
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2.3 Formulation of Equations of Motion 
A real rotor-bearing system is generally very complicated and difficult to model. 
First the expression for energies of the individual components of the bearing is 
formulated. Using these energies, the equations of motion are derived with the 
help of Lagrange’s equation. 

2.3.1 Energy Expressions  
The total energy of system is considered to be the sum of kinetic energy, potential 
energy, strain energy of the springs representing contact and dissipation energy 
due to contact damping. The detail description of the energy expressions due to 
different parts of rolling bearings, which have already derived in the papers 
published by Harsha [10], are using in this paper. The contacts between rolling 
elements and races are treated as nonlinear springs, whose stiffness is obtained by 
Hertzian theory of elasticity. The nonlinear stiffness due to Hertzian contact 
effects and evaluated by equations, which is given in Appendix A. In those 
previous papers a constant damping value was chosen, but here a nonlinear 
viscous damping model is adopted.    

2.3.2Energy Dissipation  
The lubrication is assumed to behave in a Newtonian way. Hence, a viscous 
damping model is adopted in which the dissipative forces are proportional to the 
time derivate of the mutual approach. The resulting equation yields: 

( )
p

d cF
•

= δδ                                (5) 
Where ( )δc  is also a function of the contact geometry, the material properties of 
the elastic bodies, the properties of the lubricant and the contact surface velocities, 
Hence, total energy dissipation can be calculated, which is given in Appendix B. 
 
2.4 Equations of Motion 
 

The kinetic energy and potential energy contributed by the inner race, outer race, 
balls, rotor and springs, can be differentiated with respect to the generalized 
coordinates ρj (j = 1, 2,……, Nb), xin, and yin to obtain the equations of motion. For 
the generalized coordinate’s ρj, where j = 1, 2… Nb, the equations are: 
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For the generalized coordinate xin the equation is: 
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For the generalized coordinate yin the equation is: 
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where ( )rotorinnerrotation mmm +=        
  This is a system of (Nb + 2) coupled non-linear differential equations. There is 
no external radial force is allowed to act on the bearing system and no external 
mass is attached to the outer race. The “+” sign as subscript in these equations 
signifies that if the expression inside the bracket is greater than zero, then the 
rolling element at angular location jθ  is loaded giving rise to restoring force and 
if the expression inside bracket is negative or zero, then the rolling element is not 
in the load zone, and restoring force is set to zero.  
 
 
3. Methods of solution 
 
The coupled non-linear second order differential equations are solved by 
numerical time integration technique. The non-analytic nature of the stiffness term 
renders the system equations difficult for analytical solution. 
 
3.1. Numerical integration 
The equations of motion (6)-(8) are solved using the modified Newmark-β 
method to obtain the radial displacement, velocity and acceleration of the rolling 
elements. With inclusion of damping, transient vibrations are eliminated and peak 
steady state amplitudes of vibration can be estimated. To observe the nonlinear 
behavior of the system, parameters of the ball bearing are selected and are shown 
in Table I. The time step for the investigation is taken as 510−=Δ t  sec.   
 
 
4. Results and Discussion 
 

 
The equations of motion are solved by modified Newmark-β method to obtain the 
radial displacement and velocity of the rolling elements. Two cases have been 
studied here one with off-sized rolling elements and other with rolling element 
waviness with varying the number of balls. 
 
4.1 Effects of off-sized rolling elements 
Owing to the different ball diameters, the race is deformed into a complex shape 
that turns with the rotational speed of the cage. The off-sized balls were located 
symmetrically in bearings such that they moved in the same direction 
simultaneously (i.e. the balls are assumed to be in phase). Firstly, two balls were 
assumed to be 0.2 μm oversized. The responses were obtained for the bearing 
with varying ball size of balanced rotor. The ball set rotated at the cage speed 
around the inner race and the oversized ball. Since, the ball set came to the same 
position after one cage rotation, the system underwent vibrations at a frequency  
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that was equal to the number of balls times the cage speed cagebN ω . 

When the number of balls (Nb) is 6, by way of Hopf bifurcation, the solution 
becomes unstable. The Poincaré map and orbit plot give an indication of a chaotic 
response as shown in Fig. 3 (a). Dense vibration spectrum shows a dominant peak 
at Hzbp 1002

1 =ω . Other peaks are appeared at bpω = 200 Hz and cagebp ωω 3+  = 
300 Hz as shown in Fig.3 (a). As the wave-number and number of balls are 
increase to 7, the system shows quasi-periodic nature with weak attractor and the 
peak amplitude of vibration appears at bpω2

1 = 116.66 Hz as shown in Fig. 3(b). 
Other peaks are appeared at bpω = 233.33 Hz and cagebp ωω 3+ =333.32 as shown 
in the vibration spectrum.  

This quasi-periodic nature of rotor bearing system and the peak of excitation 
in spectrum at bpω2

1  Hz is remain till the number of balls is 9 as shown in Fig. 3 
(c) (for Nb = 8) and Fig.3 (d) (for Nb = 9). Afterwards, a clear transformation is 
taking place in system nature as well as in the peak of excitation in the vibration 
spectrum as number of balls increases to 10 and above.   

For the number of balls (Nb) is 13, by way of Hopf bifurcation, the solution 
becomes stable and shows periodic nature as shown in Fig. 3 (e). A clear peak of 
excitation is appearing in spectrum at Hzbp 33.433=ω . Similar trend is getting as 
the number of balls (Nb) is increased to 16, as shown in Fig. 3 (f).   
 

Table II summarizes the relevant off size rolling elements, their peak 
amplitudes and harmonics in the bearing spectrum. The same trend for larger 
orders of off size balls can be expected. 
 
4.2 Effects rolling element waviness  

In order to study the effect of ball waviness, the ball is assumed to have wavy 
surface. The case is further simplified by assuming that the ball rotates about an 
axis passing through its center and parallel to the bearing axis. In the case of ball 
waviness, there are two important frequencies. The ball set rotates at the cage 
speed around the inner race and the ball with wavy surface acts like an oversized 
ball. Since the ball set came to the same position after one cage rotation, the 
system underwent vibrations at a frequency that was equal to the number of balls 
times the cage speed cagebN ω . Other important frequency is ball rotation frequency 
(or, wave passage frequency) occurring at ball rotation speed ( )rollwwp N ωω = . When 

the ball rotates, the position of the balls will repeat itself after each
wN

2 , where 

wN  is the number of waves per circumference of the rolling element. Therefore, 
the vibration due to rolling element waviness will take place at the speed 
of rollwN ω .  

Vibration response for ball waviness of order 6 (Nw=6) with 6 balls (Nb=6) is 
shown in Fig. 4 (a). A dominant peak appears in the vibration spectrum at wpω = 
500 Hz and bpω  = 200 Hz, with the other peaks appear at the interaction between 

both i.e. at 2
bp

wp
ωω −  = 400 Hz, and at 2

bp
wp

ωω +  = 600 Hz. The Poincaré  
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map in Fig. 4(a) gives an indication of a quasi-static response because of the ‘net’ 
structure. 

With increase in wave order and ball as 7, the peak appears at bpω = 233.31 Hz 
in vibration response as shown in Fig. 4(b). Other peaks are at wpω  = 583.31 Hz, 
and at bpwp ωω − = 350 Hz. Fig. 4(c) shows the vibration response for ball waviness 
of wave order 8. A dominant peak appears in the vibration spectrum at bpwp ωω − = 
400 Hz, due to the interaction effect between wave passage and ball passage 
frequency. The other peaks are appeared at wpω  = 666.64 Hz, bpω  = 266.6 Hz. A 
similar trend of vibration spectrum and system responses is observing with increase 
number of ball and of same wave order, which has been summarized in Table – III. 

 

 
 
5. Conclusions 
 

 
A lumped parameter model has been introduced in this paper to investigate 
structural vibrations in roller bearings. Using this model, effect of ball waviness, 
off size number of balls, nonlinear stiffness and nonlinear damping on the 
vibration response of the bearing has been studied.  
 

 
5.1 For off size Rolling Elements 
 

The foregoing results provide the following conclusion:   
 Nonlinear dynamic responses are found to be associated with ball passage 

frequency ( bpω ). Ball passage frequency is the system characteristics and the 
prediction about system behavior can be made by BPF to avoid resonance. 
When the number of balls is increased, the center of oscillations approaches 
zero implying a stiffer system. From this, it can be predicted that increasing 
the number of balls will reduce the effect of the BPF.  

 From the observed response the effects of off size balls (Nb) on the system 
behavior can be analyzed and two different stages are obtained. For Nb =3 to 
Nb =9, the predicted peak appears at bpω2

1  with other peaks of excitation 
appear at bpω and its interaction with cageω  and also nature of solution is 
quasi-periodic. While for Nb =10 to Nb =19 the predicted peak appears at bpω  
and nature of solution is periodic.  

When the number of balls is increased, the vibration reduces drastically implying 
a stiffer system; this was also reported by Aktürk et al. [6] from this it can be 
predicted that increasing the number of balls will reduce the effect of the 
modulating frequency and because of the ball passage frequency becomes 
dominant in the vibration spectrum.  
 
5.2 For Rolling Element waviness  
 The foregoing results provide the following conclusion:   
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 It is observed from the vibration spectrum that the peak amplitude of vibrations 
due to ball waviness with varying number of balls appear at the wave passage 
frequency ( )rollwN ω  and ball passage frequency ( cagebN ω ). Increasing the 
number of waves means making the ball smoother with a larger diameter. When 
the cagebrollw NN ωω ± coincides with the natural frequency of the system severe 
vibrations take place. Increasing the order of waviness will diminish the 
vibrations at the cagebrollw NN ωω ±  and only vibrations at the wave passage 
frequency will mainly remain in the spectrum.  The axial vibrations are 
produced when the number of waves per circumference is an integral multiple 
of the ball rotation frequency in the bearing, which was proved experimentally 
by Wardle (1988b). 

 

In this work, the effects of varying number of balls and wave-number of ball 
waviness are studied. Both are important parameters of study because, even if 
these are inevitable, these can be controlled the system nature to a good extent. 
From this analysis, a designer can choose the appropriate number of rolling 
elements with and without defects to avoid the severe vibrations (chaotic) 
condition.   
 

Table I Geometric and Physical Properties used for the Ball Bearings 
Ball radius 4.762 mm Radial load (W) 6 N 
Inner Race Diameter (Di) 18.738 mm Mass of rotor (m) 0.6 kg 
Outer Race Diameter (Do) 28.262 mm Damping factor (c) 200 Ns/m 
Internal radial clearance (γ) 10 μm Pitch radius of the ball set (rm) 27 mm 
Ball radius 4.762 mm Speed of  the rotor (Nr) 5000 rpm 

 

 
Table II Peaks for off size rolling elements  Table III Peaks for rolling element waviness 
Number 
of Balls 

Peak 
Amplitude 
(µm) 

Harmonic in 
Spectrum (µm) 

 Number of 
Balls & 
Wave-number 

Peak 
Amplitude 
(µm) 

Harmonic in 
Spectrum 
(µm) 

6 1
2  ωbp ωbp, ωbp+3ωcage 6 ωbp, ωwp ωwp ± 1

2 ωbp 
7 1

2  ωbp  ωbp, ωbp+3ωcage 7 ωbp  ωwp, ωwp -ωbp 

8 1
2  ωbp  ωbp, ωbp+4ωcage 8 ωwp -ωbp ωwp, ωbp 

9 1
2  ωbp  ωbp, ωbp+4ωcage 9 ωbp ωwp, ωwp -ωbp 

13 ωbp  2ωbp 13 ωbp ωwp, ωwp - ωbp 

16 ωbp  2ωbp 16 1
2 ωwp  ωwp, ωbp 
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Appendix A: Contact Deformation 
 

 
For pure point/line contact, the potential energy related with the contact is 
calculated form the theory of Hertzian contact deformation (Harris, [11]), the 
relationships for a point contact in ball bearings is a force expression with the 
displacement raised to an exponent (p) of 2

3 . 
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Hence, for ball bearing (p=3/2) stiffness at inner and outer race is, 

δ +
= incontactinin kk _                    (A.4) 
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δ +
= outcontactoutout kk _                      (A.5) 

With the consideration of surface waviness (Πin), the contact deformations at the 
inner and outer races are: 

{ }[ ]jinrin r χρδ −Π+++=                          (A.6) 
{ }[ ]inrjout R Π+++−= ρρδ                  (A.7) 

 

 
 
Appendix B: Contact Damping 
 

 
For the jth rolling element the equivalent contact stiffness between the rolling 
element and race is                                     
 2
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The deforming forces for the jth rolling element and inner race is [Harris, [11]]  
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Similarly, the damping force for the jth the rolling element with the outer race is: 
eqoutoutoutd kCF += δ_                   (B.4) 
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Hence total energy dissipation at both contact points of rolling element with inner 
and outer race is 
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Fig. 1 a) Schematic diagram of rolling element bearings    (b) Mass – spring - damper model  
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Fig. 2(a) Wavy feature of rolling elements (b) Wave of the Race    (c) off-sized balls in a set of balls  

 
 
 
Rolling Elements Defects: Case – I:  Off-sized Rolling Elements 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

Fig. 3 Poincaré Maps, Orbit Plots and FFT for varying off-sized rolling elements (a) Nb = 
6, (b) Nb = 7 (c) Nb = 8 (d) Nb = 9 (e) Nb = 13 (f) Nb = 16 
Case – II:  Rolling Elements Waviness 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

Fig. 4 Poincaré Maps, Orbit Plots and FFT for Wavy rolling elements (a) Nb=6 & Nw=6 (b) 
Nb=7 & Nw=7 (c) Nb=8 & Nw=8 (d) Nb=9& Nw=9 (e) Nb=13& Nw=13 (f) Nb=16& Nw=16 
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