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Abstract

The electromagnetic field equation for a fixed charged point is con-
sidered in LTB space time. The electromagnetic spin 1 spinor field
equation is studied by assuming a spherically symmetric current source.
A solution is obtained by using the Newman Penrose formalism together
with a suitable angular factorization assumption of the spinor field. The
result is translated into the the coordinate formalism. Accordingly one
obtains qualitatively expected results for both electromagnetic field and
potential that reduce to the standard ones in Minkowski space time.
Consistency of the integration procedure requires a constraint on one of
the metric tensor coefficients. The condition is satisfied for a still wide
subclass of LTB cosmological models. In the Robertson-Walker met-
ric the constraint condition is automatically satisfied and the results
essentially agree with existing ones.
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1 Introduction

The cosmological observation of the spectrum of Hydrogen atom is of interest.
It furnishes information about Hydrogen distribution in the Universe. Devi-
ations of the observed spectrum from the canonical one also give information
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about gravity in the region of the emitting source and its velocity and finally
on the Universe expansion.

From an elementary theoretical point of view, previsions can be done by
studying the Dirac equation with Coulomb potential in a general curved space-
time. It is therefore of interest the expression of the Coulomb potential entering
the Dirac equation. Such expression can be derived by a perturbative study in
general space time (e. g., [8, 9]) as well as by a direct evaluation from Maxwell
equations in explicit space time models. (For solutions in RW space one can
see e. g.,[2, 7]; in Anti deSitter space time see e. g., [5]).

In the present paper attention is towards the calculation of Coulomb field
and potential in a general spherically symmetric co-moving space time, a con-
text where, as far as the author knows, the problem has not explicitly con-
sidered in the literature. To that end the preliminary assumption is the def-
inition of a current vector associated to a fixed charged point. To determine
the Coulomb potential it seems better to deal with first order equation and
to determine the electromagnetic field. Accordingly one has to solve a spin 1
spinor filed equation with the electromagnetic current as a source. The equa-
tion is formulated by the Newman Penrose formalism based on a previously
considered null tetrad frame. The solution, that is determined by a suitable
coordinate dependence assumption of the spinor field, is translated into the co-
ordinate formalism. The electromagnetic tensor and the four potential vector
are then determined.

The procedure applied to obtain the results requires a consistency condition
that is not fulfilled by a general LTB metric tensor. Moreover the vector
potential does not in general verify the Lorentz condition. Both conditions are
however satisfied in a general RW space time and in a still wide class of LTB
cosmological models of physical interest. Once specialized to the Minkowski
space time the results agree with well known physical laws. When specialized
to the RW space time they are similar, but not completely identical to existing
results (e. g., [7, 2, 3]) that, however, are not all identical among themselves.

2 Definitions and Assumptions

The study is developed within a general spherically symmetric co-moving space
time whose metric tensor gµν (here called LTB metric) is defined by [4]:

ds2 = gµνdx
µdxν = dt2 − eΓ(r,t)dr2 − Y 2(r, t)

(
dθ2 + sin θ2dϕ2

)
(1)

In the calculation, the Newmn Penrose [6] formalism is adopted based on the
previously defined null tetrad frame {li, ni,mi,m∗i} [12]:

li =
1√
2

(1, e−Γ/2, 0, 0), ni =
1√
2

(1,−e−Γ/2, 0, 0), (2)
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mi =
1

Y
√

2
(0, 0, 1, i csc θ), m∗i =

1

Y
√

2
(0, 0, 1,−i csc θ) (3)

whose corresponding non null spin coefficients are:

(4)

ρ = − 1

Y
√

2
(Ẏ + Y ′e−Γ/2), µ =

1

Y
√

2
(Ẏ − Y ′e−Γ/2), (5)

β = −α =
1

2Y
√

2
cot θ, ε = −γ =

1

4
√

2
Γ̇ (6)

As usual the directional derivatives will be denoted by D = li∂i, ∆ = ni∂i, δ =
mi∂i, (δ∗)i = (m∗)i∂i.

In the following we are concerned with the determination of the electro-
magnetic field of a point of charge eo located in the origin of coordinates.
Correspondingly, the associated conserved current vector is assumed to be
[11]:

jµ = (eog
− 1

2 δ3(x), 0, 0, 0) (7)

g the determinant of the metric tensor gµν . On account of spherical space time
symmetry, it is possible to define

Jµ =
∫
dΩ jµ ≡

(
eo
e−Γ/2

Y 2
δ(r), 0, 0, 0

)
(8)

that is conserved,∇µJ
µ = 0. Jµ will be assumed as the electromagnetic current

vector relative to the charge eo. The current spinor JAA′ corresponding to Jµ

is then

JAA′ = σαAA′Jα =
J0

2

(
1 0
0 1

)
, J0 = eo

e−Γ/2

Y 2
δ(r) (9)

where the spin matrices σαAA′ readily follows from eqs. (2), (3). (e. g., [10, 1]).

3 Coulomb electromagnetic spinor field

It is better to first solve the equation for the electromagnetic tensor field. To
that end the Newman Penrose formalism is adopted. The equation to solve is
then (e. g., [10]):

∇BA′φA
B = 2πJAA′ (10)

φAB = φBA the electromagnetic spinor field, JAA′ the spinor current (9). By
making explicit the covariant spinor derivatives in terms of directional deriva-
tives and spin coefficients according to the assumptions of the previous Section,
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the equation (10) gives:

(D − 2ρ)φ1 − (δ∗ − 2α)φ0 = −eo
e−Γ/2

Y 2
δ(r) (11)

(D − ρ+ 2ε)φ2 = δ∗φ1 (12)

(∆ + µ− 2γ)φ0 = δφ1 (13)

(δ + 2β)φ2 − (∆ + 2µ)φ1 = −eo
e−Γ/2

Y 2
δ(r) (14)

It has been set φ00 = φ0, φ11 = φ2, φ01 = φ10 = φ1.
One can try to separate the ϕ dependence in the form φk(t, r, θ, ϕ) =

φk(t, r, θ) exp(imkϕ), mk ∈ R, k = 0, 1, 2. However, from (9)-(12), this is
possible only for mk = 0. Therefore we look for solution ϕ independent and of
the form

φk = ψk(t, r)Sk(θ), k = 0, 1, 2 (15)

S1(θ) = const. = 1 (16)

φ0 = φ2 (17)

Accordingly one has that δ∗φ1 = ψ1δS1 = 0 while φ0 = φ2 satisfy the equations:

(D − ρ+ 2ε)ψ0 = 0, (∆ + µ− 2γ)ψ0 = 0 (18)

From the very definition of D, ∆, ρ, µ, ε, by summing and subtracting the
equations (18) one if left, respectively, with the equations (Ẋ = ∂tX, X

′ =
∂rX)

ψ̇0 +
Ẏ

Y
ψ0 +

1

2
Γ̇ψ0 = 0, ψ′0 +

Y ′

Y
ψ0 = 0 (19)

Solutions of the first (19) should be also solution of the second (19). Hence

ψ0 =
e−Γ/2F (r)

Y
∧ e−Γ/2F (r) = G(t) (20)

F (r), G(t) arbitrary integration functions. This restricts the class of LTB
metrics to which the present integration method applies because it requires
exp Γ to be a function of t times a function of r. As to S0(θ) one can require
(see (11), (14) and assumption (17)):

(δ∗ − 2α)φ0 = (δ + 2β)φ0 ≡
ψ0

Y
√

2
(∂θ + cot θ)S0 = 0 (21)

After integration one finally obtains:

φ0 = ψ0S0(θ) =
c0

sin θ

eΓ/2F (r)

Y
(22)
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where c0 is constant of integration.
By taking into account the last results and the assumptions one can now
determine the ψ1 solution. By subtracting and summing (11) and (14), and
one is left, respectively, with the equations:

[D + ∆ + 2(µ− ρ)]ψ1 = 0 (23)

[D −∆− 2(µ+ ρ)]ψ1 = −2πeo
e−Γ/2

Y 2
δ(r) (24)

Then, by using the expressions of the directional derivatives and spin coeffi-
cients:

ψ̇1 + 2
Ẏ

Y
ψ1 = 0 (25)

ψ′1 + 2
Y ′

Y
ψ1 =

√
2πeo

e−Γ/2

Y 2
δ(r) (26)

whose solutions have to have both the forms:

ψ1 = −F (r)

Y 2
, ψ1 =

1

Y 2
(−
√

2πeo + c1) (27)

c1, F (r) integration constants. By a suitable choice of the constants one has
finally:

φ1 = ψ1 = − eo
Y 2

. (28)

4 Coulomb field and potential

By the standard correspondence between complex tensor of rank n and spinor
of type (n, n) one can obtain the expression of the electromagnetic tensor field
Fab from the e. m. spinor φAB [1, 10]:

Fab = σAX
′

a σBY
′

b (φABεX′Y ′ + εABφX′Y ′) (29)

=
{1

2
gaagbb[φ0(nbm∗a − nam∗b) + φ2(lamb −malb) +

+φ1(nalb −m∗amb +m∗bma − lanb)]
}

+
{
C.C.

}
(30)

σAX
′

a the spin matrices relative to the null tetrad frame (2), (3). An explicit
calculation by the expressions of φ1, φ0 = φ2 obtained in the previous Section
and by the null tetrad frame (2), (3) give then:

F ab = eo
e−Γ/2

Y 2
(δatδbr − δbtδar) (31)
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therefore, as expected, the electric field Ei has only the radial component Er =
eoe
−Γ/2/Y 2, Eθ = Eϕ = 0, while for the magnetic field Hi = 0, i = r, θ, ϕ. As

to the 4-potential vector Aµ, it satisfies ∇aAb −∇bAa = Fba. A solution is

Aµ = δµt
∫
F 01dr = eoδ

µt
∫ e−Γ/2

Y 2
dr (32)

The results can be specialized to the general Robertson Walker metric.
The constraint (20) is satisfied because the coefficient eΓ/2 has a factorized
dependence on t and r . Therefore in RW space time, by suitably choosing the
integration functions and constants, one has:

eΓ = R2(t)(1− κ r2)−1, κ = 0,±1 (33)

Y = rR(t) (34)

φ0 ≡ φ2 =
1

rR2(t)

1

sin θ
(35)

φ1 = − e0

r2R2(t)
(36)

F ab = e0

√
1− κr2

r2R3
(δatδbr − δbtδar) (37)

Aµ = eoδ
µt
∫ √1− κr2

r2R3
dr (38)

= −eoδµt
1

rR3
, κ = 0 (39)

= −eoδµt
1

R3

[ √
1 + r2

r
− log(r +

√
1 + r2)

]
, κ = −1 (40)

= −eoδµt
1

R3

[√
1− r2

r
+ sin−1 r

]
, κ = 1 (41)

∇µA
µ = g−1/2∂µ(g1/2Aµ) = 0, κ = 0,±1 (42)

The validity of the Lorentz gauge condition (42), does not hold for a general
LTB metric. (For further comments see the last Section).

The results reduce to the standard ones in Minkowski space time. One
can note here the new special behavior of the potential for large r and κ =
−1. The form of both electric and potential Coulomb field in RW space time
obtained here are in a qualitative agreement with other existing results (see,
e.g., [7, 2, 3]). One can see, however, that the radial component of the electric
field (37) has similar radial coordinate dependence expression, but slightly
different R(t) dependence, with respect to those of [7, 2, 3], that in turns differ
among themselves.
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5 Remarks and comments

The results of the previous Sections are essentially obtained under a gener-
alized spherical symmetry assumption for the e. m. current generated by a
fixed charged point. The solutions of the equations are looked for under the
assumption (15-17) in the context of general LTB space time. In this regards it
remains open the problem of the existence of solutions with not so a special ϕ-
dependence. More generally to knowledge of explicit non factorized solutions
would be of interest.

It seems useful to note that the results obtained above hold in LTB space
times more general than the RW ones. More precisely one can see that both
the consistency condition in (20) as well as the validity of the Lorentz condition
(42) do hold for a still large class of LTB cosmological models. To show this,
one can recalls that the LTB cosmological model is solution of the Einstein
field equationin the metric (1) for a Universe filled with dust matter without
pressure. The model can be equivalently described by the equations [4]:

eΓ =
Y ′2

1 + 2E
,

Ẏ 2

2
− M

Y
= E, M = 4πG

∫ r

0
d(t, r)Y 2Y ′dr (43)

E(r),M(r) are arbitrary integration functions of the cosmological equations;
d(t, r) the density of the dust matter.The scheme (43) can be solved in general
in parametric form [4]. If one assumes

(GM)2 = (2|E|)3, (44)

the form of the general parametric solution of (39) specializes to:

Y = (9/2)1/3M)1/3 t)2/3, E = 0, (45)

Y =
√

2|E| (1− cos η), t = η − sin η, 0 ≤ η ≤ 2π, E < 0 (46)

Y =
√

2E (cosh η − 1), t = sinh η − η, η > 0, E > 0 (47)

Since for both E > 0 and E < 0 the function t = t(η) is an invertible function,
Y is of the form Y = y(r)f(t) in all E cases. Therefore, from the first (43) and
(44), exp Γ results to be a function of t times a function of r as it is required in
(20). As to the Lorentz gauge condition, its validity follows as in (42) because
the expression g1/2Aµ results to be time independent for Y = y(r)f(t) and
taking into account (32).

Finally one can note that condition (44) is also a sufficient condition for
the separability of the Dirac equation in LTB cosmology [14]. By that con-
dition the LTB cosmological model depends on one only arbitrary integration
function. The model is therefore still suitable to describe a wide class of grav-
itational situations. It seems therefore of interest the study of the spectrum of
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the Hydrogen atom in such LTB cosmological models as well as in Standard
Cosmology in analogy to what done in [13].
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