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Abstract

In this paper we show that a model for inertial mass (quantised in-
ertia) can be derived exactly and simply by assuming that the property
of inertia is caused by gradients in the energy in the Unruh radiation
field seen by a object, and that this energy is determined by the un-
certainty principle, with the uncertainty in position being given by the
width of the Rindler horizons seen by the object. This is then an al-
ternative derivation for quantised inertia which predicts galaxy rotation
without dark matter. It is also shown that quantised inertia predicts
an expression close to the simple empirical interpolation function used

in MoND.
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1 Introduction

Physics is split between relativity, which uses smooth spacetime and demands
locality, and quantum mechanics which is modeled using wave-particles and
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seems to demand non-locality [1, 2, 3, 4, 5]. The first example of combining
both theories at astronomical scales was [6]. He suggested that the black
hole event horizons would separate virtual particles, one falling into the black
hole and one escaping, producing Hawking radiation. Fluid analogues of this
process have been shown to occur [7].

Due to the equivalence of gravity and acceleration, [8], [9] and [10] showed
that when an object accelerates it sees an information horizon (like an event
horizon) appears in its frame of reference on the side opposite to the acceler-
ation. This happens because information is limited to the speed of light by
relativity and cannot get to the object from behind that horizon. This horizon
similarly separates paired virtual particles producing acceleration-dependent
Unruh radiation. Unruh radiation is now widely accepted, but see [11]. Unruh
radiation may already have been observed [12].

The phenomena of inertial mass has never been well understood, just as-
sumed as Newton’s first law. An early inspiring attempt to explain inertial
mass with quantum vacuum was made by [13]. This scheme is unconvincing
however because it needs an arbitrary cutoff. Also, [14] asked whether Unruh
radiation might be a way to derive inertial-MoND (Modified Newtonian Dy-
namics), but concluded that Unruh radiation could not be the cause of inertia,
being isotropic.

In [15, 16] is proposed a new hypothesis to explain inertial mass called
quantised inertia. In this model the inertia of an object is explained by the
Unruh radiation it sees when it accelerates, but also the relativistic horizon
that forms in the opposite direction to the acceleration vector disallows some
wavelengths of the Unruh radiation on that side of the object giving rise to
an anisotropic radiation pressure that predicts the inertial mass quite well, see
[16, 17]. So inertia in quantised inertia comes from a combination of relativity
(the horizons) and quantum mechanics (the Unruh waves). A new feature
is that when accelerations are tiny the Unruh waves lengthen and are also
disallowed by the cosmic horizon, this time equally in all directions (Hubble-
scale Casimir effect) [15]. This causes a new loss of inertia when accelerations
are tiny. Quantised inertia modifies the usual inertial mass m to m; as follows:

mi:m<1—’z|69>. (1)

Here, c is the speed of light, the © is the co-moving diameter of the observable
cosmos and |a| is the acceleration. Eq. 1 predicts that when accelerations are
large, or at least terrestrial in size (eg: 9.8m/s?) the second term in the brackets
becomes tiny and standard inertia is recovered, but when the acceleration is
very low, for example at the edges of galaxies (when a is tiny) the second
term in the bracket becomes larger and the predicted inertial mass decreases
in a new way. Quantised inertia explains galaxy rotation without dark matter
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[18, 23] and cosmic acceleration without dark energy [15, 19].

In a similar way, applying quantum mechanics on a large scale [21] derived
the form of Newtonian gravity from the uncertainty principle and [22] derived
a formula close to Eq. 1 (quantised inertia) by using relativistic horizons in
the uncertainty principle but the expression derived was 26% too large. The
Hawking and Unruh temperatures were derived exactly with a similar method
by [24] with the new proposal that what is important is not the horizon distance
but the half-circumference (width) of the horizon, see also [25]. The advance
in this paper is to build on [22] using [24], and derive quantised inertia exactly
(and its successes such a predicting galaxy rotation without dark matter [23]
and show that the result is close to the simple interpolation function of MoND
but without needing an arbitrary constant.

2 Quantised Inertia from Uncertainty

First we are going to compute the energy uncertainty of the Unruh radiation.
Using the momentum-position uncertainty principle we get

ApAx ~ h/2. (2)

For the photons of Unruh radiation E=pc so

AEAz ~ he/2. (3)

The energy uncertainty of these photons is then AE ~ he/(2Az). The
assumption (as in [22]) is that when a particle accelerates and a relativistic
Rindler horizon forms then this destroys all the particle’s potential knowledge
of space beyond the horizon and decreases the uncertainty in position Azx.
From Eq. 3 we would then expect the uncertainty in energy to go up. We are
going to see that this energy uncertainty predicts the modified inertial mass of
one particle. As we have said the inertial mass of a particle is due to the Unruh
radiation bath it sees when it accelerates. The relativistic (so called Rindler)
horizon that appears in the opposite direction to the acceleration vector damps
the Unruh radiation on that side leading to an anisotropic radiation pressure
that looks like inertial mass. On the other side we have the Hubble horizon or
cosmic horizon that also damps the Unruh radiation from this opposed side.
Hence we have that the resulting energy uncertainty of these photons is

he he
_ = 4
2Axy  2Axy (4)

where Az and Az, are the positional uncertainties in the Hubble horizon and
in the Rindler horizon respectively. Hence we have

AFE = AFE, — AF, =




4 M.E. McCulloch and Jaume Giné

he 11 1
Ak = 2 (AZBQ A.T1) ' <5)

Now we consider these relativistic horizons. For an object at a minimal ac-
celeration (a zero acceleration is forbidden by quantised inertia) the maximum
uncertainty in position has to be due to the cosmic horizon. The uncertainty
in position is a spatial magnitude of dimension one. The vacuum fluctuations
produce the appearance of a particle-antiparticle. If this appearance occurs
near the cosmic horizon one of the pair can cross the event horizon while the
other escapes becoming real and producing what is called Unruh radiation.
For this radiation the Unruh temperature is associated with the cosmic hori-
zon. The uncertainty of the crossing point of the cosmic horizon determines
the uncertainty in the position. We assume here, as in [24] that this is the
half-circumference of the Hubble-sphere Axy = mRy; where Ry is the radius of
the cosmos. Hence Azy = 70/2 where © = 2Ry (Ry=cosmic radius), so that

he /1 2

If an object is then given an acceleration, a, then a Rindler horizon forms
at a distance away of d = ¢?/a. As before, the Unruh temperature associated
with the Rindler horizon is a consequence of the vacuum fluctuations that
appear close to the Rindler horizon. The uncertainty of the crossing point of
the Rindler horizon determines the uncertainty in the position. So the new
uncertainty of the crossing point is given by Az; = 7c?/a so that

he [ a 2
A= —|——— ). 7
2 <7r02 7r@> (7)
Rearranging we get
Ap - ey 2¢ (8)
- 27c a® )

The acceleration ’a’ is associated with the Unruh radiation from the Rindler
horizon whose temperature is given by

~ ha
N 27TC]€B‘

(9)
where kp is the Boltzmann constant. Now we take into account that the typical

energy of a photon from the Unruh radiation is £, = kgT'. Using this and Eq.
8 we can replace the ’a’ in the factor, to get

2c?
AE,=FE, (1 - a@) ) (10)
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Consequently the energy uncertainty of a photon from the Unruh radiation
is given by (10). Let E,, = mc? the energy of the accelerated particle. Let
N =FE,/E, = E,/(kgT), the number of photons equivalent to the energy of
the particle with mass m. Then we have

22 2¢2
AE,, = NAE, = NE, (1 - a@> —E, (1 - a@> . (11)

Now using E,, = mc? for the particle we get:

2¢2

Amzm(l—a@>. (12)

This is the same as Eq. 1. The important point is that quantised inertia (Eq.
1) can be derived taking into account the position uncertainty of both the
Rindler and cosmic horizons. Another way to deduce Eq. 1 is given in [28].

3 Discussion

The simple MoND function [26, 27|, which has been derived empirically from
galaxy rotation data, modifies Newton’s second law (or in another variant,

gravity) such that
1
F:m<1+%>a. (13)

In which the implied modified inertia mass is

mi—m<1+1?>. (14)

The Maclaurin series expansion is

1 ag  ai
m(l_'_?):m(l—a—(ﬁ—) (15)

Therefore the modified inertial mass predicted by quantised inertia (Eq.
11) is equal to the first two terms of the expansion of the simple MoND func-
tion, except that the value of MoND’s adjustable parameter aqy is predicted
by quantised inertia itself as being 2¢2/©. Both MoND and quantised inertia
solve the galaxy rotation problem without dark matter [18, 23], but quantised
inertia does it without arbitrary adjustment, and it also explains the observed
cosmic acceleration without needing dark energy [15, 19].
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4 Conclusion

A recent model for inertia called quantised inertia, which predicts galaxy rota-
tion without needing dark matter, and some other anomalies, can be derived
exactly by assuming that the property of inertia is caused by gradients in the
energy in the Unruh radiation field seen by the object, and that this energy
is determined by the uncertainty principle, with the uncertainty in position
being given by the width of the relativistic horizons seen by the object.

It is also shown that quantised inertia predicts an expression close to the
simple empirical interpolation function used in MoND.
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