Minimal Length, Measurability, and Special Relativity

Alexander Shalyt-Margolin

Institute for Nuclear Problems, Belarusian State University
11 Bobruiskaya str., Minsk 220040, Belarus

Copyright © 2016 Alexander Shalyt-Margolin. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
In this paper the author begins a study of Special Relativity on the basis of the measurability notion introduced in his previous works.

PACS: 03.65, 05.20

Keywords: primary measurability, generalized measurability, special relativity

1 Introduction. Main Target

This paper is a continuation of the earlier works published by the author [1]–[10]. The main idea and target of these works is to construct a correct quantum theory and gravity in terms of the variations (increments) dependent on the existent energies.

Within such a theory, the small and infinitesimal variations $dx, \delta x, dp, \delta p\ldots$ which, by definition, are independent of the existent energies should be withdrawn, being included only on passage to the particular limit. First of all, this holds true for the infinitesimal space-time variations dx_μ as the latter are at the basis of continuous space-time.

At the present time physics is using (not without success) the mathematical apparatus based on the infinitesimal space-time variations (increments)

$$dt, dx_i, i = 1, ..., 3$$ (1)
This mathematical apparatus comes from mathematical analysis [11], calculus of variations [12], and classical mechanics [13],[14]. Continuous space-time forms the base thereof. Then this tool has been successfully applied in Quantum Theory (QT) [15], Special Relativity, and General Relativity (GR) [16]. But, due to the introduction of ultraviolet and infrared divergences into Quantum Theory and also due to the correct passage to the high-energy (ultraviolet) region in Gravity, we are facing very serious problems.

By the authors opinion, these problems are solvable but beyond the paradigm of continuous space-time. The principal idea of the papers [1]–[10] is as follows: (1.1) Within a discrete model for continuous space-time, at low energies (which are far from the Planck energies) the results, to a high accuracy, are identical to those obtained by a continuous model for space-time (and in this case may be called the quasi-continuous model). But at high (Plancks) energies the indicated model is fundamentally discrete, leading to principally new results. (1.2) All variations in any physical system considered in such a discrete model should be dependent on the existent energies.

What possibilities are offered by the proposed approach? When studying the relationship mentioned in point (1.2) over the whole energy scales, we can combine low and high energies as a single unit and can solve particular problems including the following: problems of transition from low to high energies and vice versa; the ultraviolet (UV) and infra-red (IR) divergence problem in QT and GR.

In brief, as regards realization of points (1.1) and (1.2), the author has obtained the following results.

The paper [7] shows that in a quantum theory, proceeding from the natural assumptions mentioned in [9] and refined in [10] Principle of Bounded Space-Time Variations (Increments), the notion of continuous space-time can appear only in a certain limit. And this is related to the fact that the measurement procedure and Heisenberg’s Uncertainty Principle (HUP) [17] play a fundamental role in the quantum theory.

If the Principle of Bounded Space-Time Variations (Increments) is correct, the minimal length l_{min} and time $t_{\text{min}} = l_{\text{min}}/c$ appear in the nature, (where c is a speed of light). Then, based on l_{min} and t_{min} definitions of measurability and measurable quantities, it may be correctly introduced into the theory. Some examples show that, although in this case it becomes discrete, at low energies, E, far from the Planck energy $E \ll E_P$ it is close to the initial theory in continuous space-time. Real discreteness of the theory is manifested only at high energies E close to the Plancks $E \approx E_P$ [1],[7],[9],[10]. Based on measurable quantities, the construction of Classical Mechanics is given in the paper [10]. It has been demonstrated how, in the limiting transition from measurable quantities, we can have the infinitesimal space-time variations (increments) (formula (1)) as fundamental ingredients of Classical
Mechanics.
In the present paper the principles of Special Relativity are given in terms of the notion of measurable quantities.
The paper is structured as follows. Section 2 presents the results relevant for further interpretation. The presentation is rather detailed as (i) in subsequent sections there are many references to the basic notions from Section 2; and (ii) some results from the previous works (for example, Comment 2* are made more specific by the author because they are important for Sections 3 and 4. The original results are given in Section 3.
Finally, Section 4 presents concluding comments and explanations.

2 Initial Data and Necessary Information

This section gives the necessary initial data from [1]–[10]. Some part of this information is presented in [7],[9],[10].

2.1 Minimal length, Primary and Generalized Measurability

The present study is based on the Definition I. [10] (being improvement of Supposition I. in [7],[9]) and on Supposition II. from [7],[9]:

Definition I. Let’s call as primarily measurable variation any small variation (increment) \(\tilde{\Delta}x_\mu \) of any spatial coordinate \(x_\mu \) of the arbitrary point \(x_\mu, \mu = 1, \ldots, 3 \) in some space-time system \(R \), if it may be realized in the form of the uncertainty (standard deviation) \(\Delta x_\mu \) when this coordinate is measured within the scope of Heisenberg’s Uncertainty Principle (HUP) [17]

\[
\tilde{\Delta}x_\mu = \Delta x_\mu, \Delta x_\mu \simeq \frac{\hbar}{\Delta p_\mu}, \mu = 1, 2, 3
\]

(2)

for some \(\Delta p_\mu \neq 0 \).

Similarly, at \(\mu = 0 \) for the pair “time-energy” \((t, E)\), let us call any small variation (increment) the primarily measurable variation in the value of time \(\tilde{\Delta}x_0 = \tilde{\Delta}t_0 \) if it may be realized in the form of the uncertainty (standard deviation) \(\Delta x_0 = \Delta t \), and then

\[
\tilde{\Delta}t = \Delta t, \Delta t \simeq \frac{\hbar}{\Delta E}
\]

(3)

for some \(\Delta E \neq 0 \). Here HUP is given for the nonrelativistic case. In the relativistic case HUP has the distinctive features [18] which, however, are of no significance for the general formulation of Definition I., being associated only with particular alterations in the right-hand side of the second relation
Equation (3).
It is clear that at low energies $E \ll E_P$ (momenta $P \ll P_{pl}$) **Definition I.**
sets a lower bound for the **primarily measurable variation** Δx_μ of any
space-time coordinate x_μ.
At high energies E (momenta P) this is not the case if E (P) have no upper
limit. But, according to the modern knowledge, E (P) are bounded by some
maximal quantities $E_{\text{max}}, (P_{\text{max}})$

$$E \leq E_{\text{max}}, P \leq P_{\text{max}},$$

where in general $E_{\text{max}}, P_{\text{max}}$ may be on the order of the Planck quantities
$E_{\text{max}} \propto E_P, P_{\text{max}} \propto P_{pl}$ and also may be the trans-Planck quantities.

In any case the quantities P_{max} and E_{max} lead to the introduction of the
minimal length l_{min} and of the minimal time t_{min}.

Supposition II. There is the minimal length l_{min} as a minimal unit of measurement
for all **primarily measurable variations** having the dimension of length, whereas the minimal time $t_{\text{min}} = l_{\text{min}}/c$ as a minimal unit of measurement for all quantities or **primarily measurable variations** (increments)
having the dimension of time, where c is a speed of light.

l_{min} and t_{min} are naturally introduced as $\Delta x_\mu, \mu = 1, 2, 3$ and Δt in Equations (2) and (3) for $\Delta p_\mu = P_{\text{max}}$ and $\Delta E = E_{\text{max}}$.

For definiteness, we consider that E_{max} and P_{max} are the quantities on the
order of the Planck quantities, then l_{min} and t_{min} are also on the order of Planck quantities $l_{\text{min}} \propto l_p, t_{\text{min}} \propto t_p$.

Definition I. and **Supposition II.** are quite natural in the sense that there are no physical principles with which they are inconsistent.
The combination of **Definition I.** and **Supposition II.** will be called the
Principle of Bounded Primarily Measurable Space-Time Variations (Increments) or, for short, the **Principle of Bounded Space-Time Variations (Increments)** abbreviated as (PBSTV).

As the minimal unit of measurement l_{min} is available for all the **primarily measurable variations** ΔL having the dimensions of length, the “Integrality Condition” (IC) is the case

$$\Delta L = N_{\Delta L} l_{\text{min}},$$

where $N_{\Delta L} > 0$ is an integer number.

In a like manner, the same “Integrality Condition” (IC) is the case for all the **primarily measurable variations** Δt having the dimensions of time. And similar to Equation (5), we get for any time Δt:

$$\Delta t \equiv \Delta t(N_t) = N_{\Delta t} t_{\text{min}},$$

where $N_{\Delta t} > 0$ is an integer number too.

Definition 1 (Primary or Elementary Measurability.)
(1) In accordance with PBSTV, let us define the quantity having the dimensions of length or time as **primarily (or elementarily) measurable** when it satisfies the relation Equation (5) (and respectively Equation (6)).

(2) Let us define any physical quantity **primarily (or elementarily) measurable** when its value is consistent with point (1) of this Definition.

Since, in fact, PBSTV introduces the minimal length \(l_{\text{min}} \) for **primarily measurable variations**, instead of HUP, we can consider its widely known high-energy generalization—the Generalized Uncertainty Principle (GUP) that naturally leads to the minimal length \(l_{\text{min}} \) [19]–[30]:

\[
\Delta x \geq \frac{\hbar}{\Delta p} + \alpha' l_P^2 \frac{\Delta p}{\hbar}.
\]

(7)

Here \(\alpha' \) is the model-dependent dimensionless numerical factor and \(l_P \) is the Planck length. As Equation (7) is a quadratic inequality, then it naturally leads to the minimal length \(l_{\text{min}} = \xi l_P = 2\sqrt{\alpha' l_P} \).

Due to (5), we have

\[
\Delta x = N_{\Delta x} l_{\text{min}}.
\]

(8)

Then the transition from high to low energies in GUP, i.e., \((\text{GUP}, \Delta p \to 0) = (\text{HUP})\), is nothing else but

\[
(N_{\Delta x} \approx 1) \to (N_{\Delta x} \gg 1).
\]

(9)

Substituting (8) into (7) and making the necessary calculations, we can see that in the general case

\[
\Delta p \equiv \Delta p_{N_{\Delta x}} = \frac{\hbar}{(N_{\Delta x} - \frac{1}{4N_{\Delta x}}) l_{\text{min}}}.
\]

(10)

Whereas at low energies \(E \ll E_P \)

\[
\Delta p \equiv \Delta p_{N_{\Delta x}} = \frac{\hbar}{N_{\Delta x} l_{\text{min}}}.
\]

(11)

At the same time, for the corresponding energy \(E \), we have

\[
\Delta E \equiv \Delta E(N_t) = \frac{\hbar}{(N_t - \frac{1}{4N_t}) t_{\text{min}}}.
\]

(12)

or, for low energies, we get

\[
\Delta E \equiv \Delta E(N_t) = \frac{\hbar}{N_t t_{\text{min}}}.
\]

(13)

In the relativistic case the formulae corresponding to (10),(12) have been derived in [2],[7].
Note that the above-mentioned formulae may be conveniently rewritten in terms of \(l_{\text{min}} \) with the use of the deformation parameter \(\alpha_a \) [7]. This parameter has been introduced earlier in papers [31]–[38] as a deformation parameter (based on paper [39]) on going from the canonical quantum mechanics to the quantum mechanics at Planck’s scales (early Universe) that is considered to be the quantum mechanics with the minimal length (QMML)

\[
\alpha_a = \frac{l_{\text{min}}^2}{a^2},
\]

where \(a \) is the measuring scale.

Actually, with the equality \((\Delta p \Delta x = \hbar) \), Equation 7 is of the form:

\[
\Delta x = \frac{\hbar}{\Delta p} + \frac{\alpha \Delta x}{4} \Delta x.
\]

In this case, due to Equations (5), (9) and (15) take the following form:

\[
N \Delta x l_{\text{min}} = \frac{\hbar}{\Delta p} + \frac{1}{4 N \Delta x} l_{\text{min}}
\]

or

\[
(N \Delta x - \frac{1}{4 N \Delta x}) l_{\text{min}} = \frac{\hbar}{\Delta p}.
\]

That is we have

\[
\Delta p = \frac{\hbar}{(N \Delta x - \frac{1}{4 N \Delta x}) l_{\text{min}}}
\]

From Equations (16)–(10) it is clear that HUP, Equation (2), appears, to a high accuracy, in the limit \(N \Delta x \gg 1 \) in conformity with Equation (9).

It is easily seen that the parameter \(\alpha_a \) from Equation (14) is discrete as it is nothing else but

\[
\alpha_a = \frac{l_{\text{min}}^2}{a^2} = \frac{l_{\text{min}}^2}{N^2 \alpha_{a \text{min}}^2} = \frac{1}{N^2}.
\]

At the same time, from Equation (19) it is evident that \(\alpha_a \) is irregularly discrete.

It is clear that from Equation (10) at low energies (\(|N \Delta x| \gg 1\)), up to the constant

\[
\frac{h^2}{l_{\text{min}}^2} = \frac{\hbar c^3}{4 \alpha' G}
\]

we have

\[
\alpha_{\Delta x} = (\Delta p)^2, \quad \text{i.e.} \alpha_{\Delta x} \propto (\Delta p)^2.
\]

However, the physical quantities complying with Definition 1 are insufficient for the research of physical systems.

Indeed, such a variable as

\[
\alpha_{N l_{\text{min}}} (N l_{\text{min}}) = l_{\text{min}}/N,
\]
(where αNl_{min} is taken from formula (19) at $a = Nl_{\text{min}}$), is fully expressed in terms of only Primarily Measurable Quantities from Definition 1 and hence may appear at any stage of calculations, apparently being inconsistent with Definition 1. Because of this, it is necessary to introduce the following definition generalizing Definition 1—

Definition 2. Generalized Measurability

We shall call any physical quantity the generalized-measurable or, for simplicity, measurable quantity if any of its values may be obtained in terms of Primarily Measurable Quantities from Definition 1.

To simplify, in what follows we use the term Measurability instead of Generalized Measurability.

It’s evident that any primarily measurable quantity (PMQ) is measurable. Generally speaking, counter is not correct, as indicated by formula (22).

Naturally, the minimal possible primarily measurable change of length is l_{min}. It corresponds to some maximal value of the energy E_{max} or momentum P_{max}. If $l_{\text{min}} \propto l_P$, then $E_{\text{max}} \propto E_P, P_{\text{max}} \propto P_P$. Here $P_{\text{max}} \propto P_P$, where P_P is where the Planck momentum. Then denoting in the nonrelativistic case with $\Delta_p(w)$ a minimal primarily measurable change every spatial coordinate w corresponding to the energy E we obtain the following equation

$$\Delta_{P_{\text{max}}}(w) = \Delta_{E_{\text{max}}}(w) = l_{\text{min}}. \quad (23)$$

Evidently, for lower energies (momenta), the corresponding values of $\Delta_p(w)$ are higher and, as the quantities having the dimensions of length are transformed to

$$|\Delta_{(N_p)}(w)| = |N_p - \frac{1}{4N_p}|l_{\text{min}}, \quad (24)$$

where $|N_p| > 1$ is an integer number, we have

$$|N_p - \frac{1}{4N_p}|l_{\text{min}} = \frac{\hbar}{|p(N_p)|}, \quad (25)$$

where $p(N_p)$ is already the generalized-measurable value.

In the relativistic case, for primarily measurable variations, Equation (23) still holds, whereas Equation (24) for $E \equiv E(N_E) < E_{\text{max}}$ is replaced by

$$|\Delta_{E(N_E)}(w)| = |N_E|l_{\text{min}}, \quad (26)$$

where $|N_E| > 1$ is an integer.

Next we assume that at high energies $E \propto E_P$ there is a possibility only for the nonrelativistic case or ultrarelativistic case.
Then, for all the \textbf{measurable} variations in \textit{ultrarelativistic} case, formula (25) takes the form [7]:

\[|N_E - \frac{1}{4N_E}|l_{min} = \frac{hc}{E(N_E)} = \frac{h}{|p(N_p)|}, \]

(27)

where \(N_E = N_p \), and, similarly, formulae (25) \(E(N_E) \) \(p(N_p) \) represent the \textbf{generalized-measurable} quantities too.

In the relativistic case at low energies we have

\[E \ll E_{max} \propto E_p, \]

(28)

formula (24) takes the form

\[|\Delta E(N_E)(w)| = |N_E|l_{min} = \frac{hc}{E(N_E)}, |N_E| \gg 1 - \text{integer}. \]

(29)

And the energy \(E(N_E) \) becomes the \textbf{primarily measured} quantity.

In the nonrelativistic case at low energies Equation (25), due to formula (28), takes the form

\[|\Delta p(N_p)(w)| = |N_p|l_{min} = \frac{h}{|p(N_p)|}, |N_p| \gg 1 - \text{integer}, \]

(30)

where \(p(N_p) \) is the \textbf{primarily measured} quantity too.

In a similar way, for the time coordinate \(t \), by virtue of Equations (6)–(13), at the same conditions we have similar Equation (23) for a minimal \textbf{primarily measurable} change

\[\Delta_{E_{max}}(t) = t_{min}. \]

(31)

For \(E \equiv E(N_t) \ll E_{max} \) we have

\[|\Delta E(N_t)(t)| = |N_t - \frac{1}{4N_t}|t_{min}, \]

(32)

where \(|N_{E(N_t)}| > 1 \) is an integer, so that we obtain, similar to (25) and (27), the \textbf{generalized-measurable} quantity \(E(N_t) \) from

\[|N_t - \frac{1}{4N_t}|t_{min} = \frac{hc}{E(N_t)}. \]

(33)

In the relativistic case at low energies

\[E \ll E_{max} \propto E_p, \]

(34)
equation (24) takes the form [7]:

\[|\Delta_{E(N_t)}(w)| = |N_t|l_{\text{min}} = \frac{\hbar c}{E(N_t)} |N_t| \gg 1 - \text{integer}, \]

(35)

where \(E(N_t) \) is already the\textbf{ primarily measured} quantity.

Let us make several important \textbf{Comments}:

\textit{Comment 2*}.

From the above formulae it follows that, within GUP, the \textbf{primarily measurable} variations (quantities) are derived, to a high accuracy, from the \textbf{generalized-measurable} variations (quantities) \textit{only} in the low-energy limit \(E \ll E_P \), (formula (9))

\textit{Comment 2.1.}

What is the main difference between \textbf{Definition 1} and \textbf{Definition 2}?

\textbf{2.1.1. Definition 1} defines variables which may be obtained from the immediate experiment.

\textbf{2.1.2. Definition 2} gives the variables which may be \textit{calculated} based on the \textbf{primarily measurable quantities}, i.e. based on the data obtained in the previous clause 2.1.1.

\textit{Comment 2.2.}

It is evident that HUP-derived (2) \(\Delta p_i \equiv \Delta p_{i,HUP}; i = 1, \ldots, 3 \) are \textbf{primarily measurable} quantities:

\[\Delta p_i \simeq \frac{\hbar}{\Delta x_i} = \frac{\hbar}{N_\Delta x_i l_{\text{min}}}. \]

(36)

However, the variables \(\Delta p_i \equiv \Delta p_{i,GUP} \), obtained from GUP (7) and defined by formula (10), are obviously not the same but only \textbf{measurable} quantities.

From formulae (20) and (21) it follows that, in the case HUP (2)is correct, i.e., at low energies \(E \ll E_{\text{max}} \propto E_P \), in the notations of formulae (24)–(35)we have

\[\alpha_{N_pl_{\text{min}}}(HUP) \equiv \alpha_{\Delta x} = p(N_p)^2 l_{\text{min}}^2 \hbar^2 = \frac{1}{N_p^2}, \]

(37)

where \(\Delta x = N_p l_{\text{min}} \) and \(p(N_p) \) is calculated from formula (30).

However, at high energies \(E \approx E_P \) HUP is replaced by GUP, the \textbf{primarily measurable quantity} \(p(N_p) \) from formula (30) is replaced by the \textbf{generalized measurable quantity} \(\Delta p_i \equiv \Delta p_{i,GUP} \) from formula (25).
Then \(\alpha_{N_p l_{\min}}(HUP) \) may be replaced by \(\alpha_{N_p l_{\min}}(GUP) \) as follows:

\[
\alpha_{N_p l_{\min}}(GUP) = p(N_p, GUP) \frac{l_{\min}^2}{\hbar^2} = \\
= \frac{l_{\min}^2}{(N_p - \frac{1}{4N_p})^2 l_{\min}^2} = \frac{1}{(N_p - \frac{1}{4N_p})^2}.
\]

When going from high energies \(E \approx E_P \) to low energies \(E \ll E_P \), we get

\[
\alpha_{N_p l_{\min}}(GUP) \xrightarrow{|N_p| \approx 1 \rightarrow (|N_p| \gg 1)} \alpha_{N_p l_{\min}}(HUP).
\]

In what follows all the considerations are given in terms of measurable quantities in the sense of Definition 2 given in this Section. Of course, this applies also to the variations of space-time coordinates.

2.2 Space-Time Lattice of Primarily Measurable Quantities, Dual Lattice and \(\alpha - lattice \)

For convenience, we denote the minimal length \(l_{\min} \neq 0 \) by \(\ell \) and \(t_{\min} \neq 0 \) by \(\tau = \ell/c \).

So, provided the minimal length \(\ell \) exists, two lattices are naturally arising.

I. Lattice of the space-time variation—\(\text{Lat}_{S-T} \) representing, to within the known multiplicative constants, for sets of nonzero integers \(N_w \neq 0 \) and \(N_t \neq 0 \) in corresponding formulae from a set of Equations 24 and (35) for each of the three space variables \(w = x; y; z \) and the time variable \(t \)

\[
\text{Lat}_{S-T} = (N_w \ell, N_t \tau).
\]

Which restrictions should be initially imposed on these sets of nonzero integers?

It is clear that in every such set all the elements \((N_w \ell, N_t \tau) \) should be sufficiently “close”, because otherwise, for one and the same space-time point, variations in the values of its different coordinates are associated with principally different values of the energy \(E \) which are “far” from each other.

Note that the words “close” and “far” will be elucidated further in this text.

Thus, at the admittedly low energies (Low Energies) \(E \ll E_{\text{max}} \propto E_P \) the low-energy part (sublattice) \(\text{Lat}_{S-T}[LE] \) of \(\text{Lat}_{S-T} \) is as follows:

\[
\text{Lat}_{S-T}[LE] = (N_w \ell, N_t \tau); |N_x| \gg 1, |N_y| \gg 1, |N_z| \gg 1, |N_t| \gg 1.
\]

At high energies (High Energies) \(E \rightarrow E_{\text{max}} \propto E_P \) we, on the contrary, have the sublattice \(\text{Lat}_{S-T}[HE] \) of \(\text{Lat}_{S-T} \)

\[
\text{Lat}_{S-T}[HE] = (N_w \ell, N_t \tau); |N_x| \approx 1, |N_y| \approx 1, |N_z| \approx 1, |N_t| \approx 1.
\]
The lattice \(\text{Lat}_{S-T} (40) \) is called the primary (or primitive) lattice of the space-time variation.

II. Next let us define the lattice momenta-energies variation \(\text{Lat}_{P-E} \) as a set to obtain \((p_x(N_{x,p}), p_y(N_{y,p}), p_z(N_{z,p}), E(N_t))\) in the nonrelativistic and ultrarelativistic cases for all energies, and as a set to obtain \((E_x(N_{x,E}), E_y(N_{y,E}), E_z(N_{z,E}), E(N_t))\) in the relativistic (but not ultrarelativistic) case for low energies \(E \ll E_P \), where all the components of the above sets conform to the space coordinates \((x, y, z)\) and time coordinate \(t\) and are given by the corresponding formulae (23)–(35) from the previous Section.

Note that, because of the suggestion made after formula Equation (28) in the previous Section, we can state that the foregoing sets exhaust all the collections of momenta and energies possible for the lattice \(\text{Lat}_{S-T} \).

From this it is inferred that, in analogy with point I of this Section, within the known multiplicative constants, we have

\[
\text{Lat}_{P-E} \cong \left(\frac{1}{N_w - \frac{1}{4N_w}}, \frac{1}{N_t - \frac{1}{4N_t}} \right),
\]

where \(N_w \neq 0, N_t \neq 0 \) are integer numbers from Equation (40). Similar to Equation (41), we obtain the low-energy (Low Energy) part or the sublattice \(\text{Lat}_{P-E}[LE] \) of \(\text{Lat}_{P-E} \)

\[
\text{Lat}_{P-E}[LE] \approx \left(\frac{1}{N_w}, \frac{1}{N_t} \right), |N_w| \gg 1, |N_t| \gg 1.
\]

In accordance with Equation (42), the high-energy (High Energy) part (sublattice) \(\text{Lat}_{P-E}[HE] \) of \(\text{Lat}_{P-E} \) takes the form

\[
\text{Lat}_{P-E}[HE] \approx \left(\frac{1}{N_w - \frac{1}{4N_w}}, \frac{1}{N_t - \frac{1}{4N_t}} \right), |N_w| \to 1, |N_t| \to 1.
\]

It is important to note the following.

In the low-energy sublattice \(\text{Lat}_{P-E}[LE] \) all elements are varying very smoothly, enabling the approximation of a continuous theory.

We will preserve the lattice \(\text{Lat}_{P-E} \), but primary lattice \(\text{Lat}_{S-T} \) will be replaced with “\(\alpha \)-lattice“, measurable space-time quantities, which will be denoted by \(\text{Lat}_{S-T}^{\alpha} \):

\[
\text{Lat}_{S-T}^{\alpha} \cong (\alpha N_w \ell, \alpha N_t \tau) = \left(\frac{\ell}{N_w}, \frac{\tau}{N_t} \right).
\]

In the last formula the variable \(\alpha_{N_t \tau} \) denotes the parameter \(\alpha \) corresponding to the length \((N_t \tau)c \)

\[
\alpha_{N_t \tau} = \alpha_{(N_t \tau)c}.
\]
As in this case the low energies \(E \ll E_P \) are discussed, \(\alpha_{N_w \ell} \) in this formula is consistent with the corresponding parameter from formula (37):

\[
\alpha_{N_w \ell} = \alpha_{N_w \ell}(HUP)
\]

(48)

As it was mentioned in the previous section, in the low-energy \(E \ll E_{\text{max}} \propto E_P \) all elements of the sublattice \(\text{Lat}_{P-E}[LE] \) are varying very smoothly, enabling the approximation of a continuous theory.

Similarly to the low-energy part of \(\text{Lat}_{S-T}[LE] \), the lattice \(\text{Lat}_{S-T}^{\alpha} \) will vary very smoothly:

\[
\text{Lat}_{S-T}^{\alpha}[LE] = \left(\frac{\ell}{N_w}, \frac{\tau}{N_t} \right); |N_x| \gg 1, |N_y| \gg 1, |N_z| \gg 1, |N_t| \gg 1.
\]

(49)

In Section 5 of [7] the three following cases are selected:

(a) “Quantum Consideration, Low Energies”:

\[
1 \ll |N_w| \leq \tilde{N};
\]

(b) “Quantum Consideration, High Energies”:

\[
|N_w| \approx 1;
\]

(c) “Classical Picture”:

\[
1 \ll \tilde{N} \ll |N_w|.
\]

Here \(\tilde{N} \) is the cutoff parameter, defined by the current task [7].

It is assumed that there is a correct transition to the infinite limit in the “Classical Picture” (c)

\[
|N_w| \to \infty, |N_t| \to \infty.
\]

(50)

Then, if for the three space coordinates \(x_i; i = 1, 2, 3 \) we introduce the following notation:

\[
\Delta(x_i) \doteq \Delta[\alpha_{N_{\Delta x_i}}] = \alpha_{N_{\Delta x_i} \ell}(N_{\Delta x_i} \ell) = \ell/N_{\Delta x_i};
\]

\[
\frac{\Delta[F(x_i)]}{\Delta(x_i)} = \frac{F(x_i + \Delta(x_i)) - F(x_i)}{\Delta(x_i)}.
\]

(51)

it is evident that

\[
\lim_{|N_{\Delta x_i}| \to \infty} \frac{\Delta[F(x_i)]}{\Delta(x_i)} = \lim_{\Delta(x_i) \to 0} \frac{\Delta[F(x_i)]}{\Delta(x_i)} = \frac{\partial F}{\partial x_i}.
\]

(52)
Respectively, for the time \(x_0 = t \) we have:

\[
\Delta(t) = \tilde{\Delta}[\alpha_{N\Delta t}] = \alpha_{N\Delta t}\tau(N\Delta t\tau) = \tau/N\Delta t;
\]

\[
\frac{\Delta[F(t)]}{\Delta(t)} \equiv \frac{F(t + \Delta(t)) - F(t)}{\Delta(t)},
\]

(53)

then

\[
\lim_{|N\Delta| \to \infty} \frac{\Delta[F(t)]}{\Delta(t)} = \lim_{\Delta(t) \to 0} \frac{\Delta[F(t)]}{\Delta(t)} = \frac{dF}{dt}.
\]

(54)

We shall designate for the momenta \(p_i; i = 1, 2, 3 \)

\[
\frac{\Delta p_i F(p_i)}{\Delta p_i} \equiv \frac{F(p_i + \Delta p_i) - F(p_i)}{\Delta p_i} = \frac{F(p_i + \frac{\hbar}{N\Delta x_i}) - F(p_i)}{\frac{\hbar}{N\Delta x_i}}.
\]

(55)

From where, similar to (52), we can drive

\[
\lim_{|N\Delta x_i| \to \infty} \frac{F(p_i + \Delta p_i) - F(p_i)}{\Delta p_i} = \lim_{|N\Delta x| \to \infty} \frac{F(p_i + \frac{\hbar}{N\Delta x_i}) - F(p_i)}{\frac{\hbar}{N\Delta x_i}} = \]

\[
\lim_{\Delta p_i \to 0} \frac{F(p_i + \Delta p_i) - F(p_i)}{\Delta p_i} = \frac{\partial F}{\partial p_i}.
\]

(56)

Therefore, at low energies \(E \ll E_P \), i.e. for \(|N\Delta x| \gg 1; i = 0, ..., 3 \), on going to the limit (52),(54),(56) it is possible to obtain the known partial derivatives like in the case of continuous space-time.

It should be noted that \(\alpha = \text{- lattice Lat}_{S-T} \alpha \) (formula (46)) is not introduced artificially. But it appears with the “factor” 1/4 from equation (15) written in the form

\[
\Delta x = \frac{\hbar}{\Delta p} = \frac{1}{4} \alpha_{\Delta x}{\Delta x}.
\]

(57)

It is evident that the factor 1/4 in the right part (57) is not significant in this case.

In [10] it has been shown that, using the limiting transition to low energies (i.e., at \(|N\Delta t|, |N\Delta x_i| \to \infty \) formula (52)–(56)) from \(\alpha = \text{- lattice Lat}_{S-T} \alpha \), we can get the Classical Mechanics in terms of the measurable quantities.

In this case the infinitesimal space-time variations (1) are appearing in the limit

\[
(\alpha_{N\Delta t}\tau N\Delta t\tau = \frac{\tau}{N\Delta t} = p_{N\Delta t}\epsilon \frac{\ell^2}{\hbar}) \to \infty \ dt,
\]

\[
(\alpha_{N\Delta x_i}\ell N\Delta x_i\ell = \frac{\ell}{N\Delta x_i} = p_{N\Delta x_i}\epsilon \frac{\ell^2}{\hbar}) \to \infty \ dx_i, 1 = 1, ..., 3.
\]

(58)
3 Special Relativity in Terms of Measurable Quantities. Start

3.1 Basic Definitions and Tools

It is assumed that we are in the region of low energies \(E \ll E_P \), and we start from the primarily-measurable momenta \((p_{N\Delta x_i}, p_{N\Delta t_i})\) in the left-hand side of the formula (58) to have

\[
|N_{\Delta x}\rangle \gg 1 \tag{59}
\]

for all the elements of the set \((N_{\Delta x}\).)

Definition 3.1

Let us denote any of the fixed sets of momenta \((p_{N\Delta x_i}, p_{N\Delta t_i})\) meeting the condition (59) the canonically measurable basic set of space-time, and the canonically measurable prototype of the infinitesimal space-time interval square in the “flat case”

\[
ds^2 = \eta_{\mu\nu}dx^\mu dx^\nu. \tag{60}
\]

With respect to \((p_{N\Delta x_i}\), we take the expression

\[
\Delta s^2(p_{N\Delta x_i}) \doteq \Delta s^2(N_{\Delta x}) \doteq \eta_{\mu\nu} \frac{\ell^4}{H^2} p_{N\Delta x_i} p_{N\Delta x} = \eta_{\mu\nu} \frac{\ell^2}{N_{\Delta x_i} N_{\Delta x}}, \tag{61}
\]

where \(\eta_{\mu\nu}\) is the Minkowskian metric

\[
||\eta_{\mu\nu}|| = ||\eta^{\mu\nu}|| = \text{Diag} (1, -1, -1, -1). \tag{62}
\]

Next let us find the measurable prototype (analog) for Lorentz transformations. Then, in what follows, we assume that the speed of light \(c = 1\).

It is interesting to consider the Lorentz transformations [40],[41] in terms of measurable quantities.

The Hyperbolic rotations

\[
t' = t \cosh \alpha + x \sinh \alpha, \\
x' = t \sinh \alpha + x \cosh \alpha, \\
\alpha = \text{const}, \quad y' = y, \quad z' = z \tag{63}
\]

in the infinitesimal form will be as follows:

\[
dt' = \Delta(\alpha)dt = dt \cosh \alpha + dx \sinh \alpha, \\
dx' = \Delta(\alpha)dx = dt \sinh \alpha + dx \cosh \alpha, \\
\alpha = \text{const}, \quad dy' = dy, \quad dz' = dz. \tag{64}
\]
We suppose that the effect of the Lorentz Group (LG) on the canonically measurable basic set \((p_{N\Delta x})\) is the same as on \((dx_\mu)\), with the corresponding index \(\mu\). Specifically, formula (64) has a measurable analog that, up to the factor \(\ell^2/\hbar\), will be of the form

\[
\begin{align*}
 p_t(\alpha) &= \Delta(\alpha)p_{N\Delta t} = p_{N\Delta t} \cosh \alpha + p_{N\Delta x} \sinh \alpha, \\
 p_x(\alpha) &= \Delta(\alpha)p_{N\Delta x} = p_{N\Delta t} \sinh \alpha + p_{N\Delta x} \cosh \alpha, \\
 \alpha &= \text{const}, \quad p_{N\Delta y'} = p_{N\Delta y}, \quad p_{N\Delta z'} = p_{N\Delta z}.
\end{align*}
\]

Let \((p_\mu)\) denote some orbital element of LG generated in the four-dimensional space by the canonically measurable basic set \((p_{N\Delta x})\), and we have

\[
(p_\mu) \in (LG)(p_{N\Delta x}) = \{g(p_{N\Delta x})|g \in (LG)\}.
\]

Then \((p_\mu)\) is termed as the measurable basics set of space-time, and the expression

\[
\Delta s^2_{(p_\mu)} = \eta_{\mu\nu} \frac{\ell^4}{\hbar^2} p_\mu p_\nu
\]

is identified as the measurable prototype of the infinitesimal space-time interval square (60) with respect to \((p_\mu)\).

It is easy to check out that, for the random canonical element

\[
(p_\mu) \doteq (p_{N\Delta x}),
\]

the hyperbolic rotations (66)

\[
(p_{N\Delta x}) \rightarrow \Delta(\alpha)(p_{N\Delta x})
\]

retain their quadratic form (61), and we have

\[
\Delta s^2_{\Delta(\alpha)(p_{N\Delta x})} = \Delta s^2_{(p_{N\Delta x})}.
\]

So, the operator \(\Delta(\alpha) \in (LG)\) retains the Minkowskian metric in the ”measurable form” (61). In a similar way, we can show that the orthogonal group \(O(3)\) in force in the subspace generated by \((p_{N\Delta x_i}), i = 1, 2, 3\) and the representations about the axes retain their quadratic forms (61).

Thus, the Lorentz Group (LG) that is in force for \((p_{N\Delta x})\) from (68) retains (61), and for all \(g \in (LG)\) we have

\[
\Delta s^2_{g(p_{N\Delta x})} = \Delta s^2_{(p_{N\Delta x})}.
\]

As usual, the Lorentz boost (66) may be written as

\[
\begin{align*}
 \Delta(\alpha)p_{N\Delta t} &= \frac{p_{N\Delta t} + p_{N\Delta x} V}{\sqrt{1 - V^2}}, \\
 \Delta(\alpha)p_{N\Delta x} &= \frac{p_{N\Delta t} V + p_{N\Delta x}}{\sqrt{1 - V^2}}, \\
 p_{N\Delta y'} &= p_{N\Delta y}, \quad p_{N\Delta z'} = p_{N\Delta z}.
\end{align*}
\]
where \(\cosh \alpha = 1/\sqrt{1 - V^2} \), \(\sinh \alpha = V/\sqrt{1 - V^2} \).

The canonically measurable prototype of the speed components \(v_{x_i} = dx_i/dt \) in this case will be the quantities \(\tilde{v}_{x_i} = \frac{p_{N\Delta x_i}}{p_{N\Delta x_0}} = \frac{N\Delta x_i}{N\Delta x_0} \).

Consequently, in the measurable form, for the speed components in the general case of (72), we get the following:

\[
\begin{align*}
\frac{\Delta(\alpha)x'}{\Delta(\alpha)t'} &= \frac{V + \tilde{v}_x}{1 + \tilde{v}_x V}, \\
\frac{\Delta(\alpha)y'}{\Delta(\alpha)t'} &= \frac{\tilde{v}_y \sqrt{1 - V^2}}{1 + \tilde{v}_x V}, \\
\frac{\Delta(\alpha)z'}{\Delta(\alpha)t'} &= \frac{\tilde{v}_z \sqrt{1 - V^2}}{1 + \tilde{v}_x V}.
\end{align*}
\]

Then it is assumed that all the quantities considered are measurable in the sense of Definition 2. Generalized Measurability from Section 2. This is true for all variations in the indicated quantities. Besides, it is assumed that the infinitesimal increments of a continuous theory \((dx_\mu) \) are replaced by \((\frac{\ell}{cN} p_{N\Delta x_\mu}) = (\frac{\ell}{cN}) \).

This supposition is quite natural for the four-dimensional radius vector \((ct, x, y, z) \doteq (x_\mu)\).

For all other four-dimensional vectors, tensors, pseudotensors, and the like this means that their components are dependent only on measurable coordinates and measurable variations of these coordinates. It is easily seen, these quantities retain all their principal properties involved in tensor analysis (the corresponding LG representations in the space of these quantities, convolution, etc.) because, by definition, measurability is not affecting these properties.

It is interesting to consider in this formalism a very important problem associated with differentiation and integration.

Let the function \(\varphi(x_\mu) \) of measurable coordinates \((x_\mu)\) be scalar. (As noted above, LG retains the property of measurability. So, subsequently there is no need to qualify this specially.) In a continuous theory, from \(\varphi(x_\mu) \) we can construct the 4-vector as follows:

\[
\frac{\partial \varphi}{\partial x_\mu} = \left(\frac{\partial \varphi}{c\partial t}, \nabla \varphi \right).
\]

Since it was assumed that \(c = 1 \) and hence \(\frac{\ell}{cN} = \frac{\ell}{cN} = \frac{t_{\text{min}}}{N} \), the analog of (74) in the formalism under study for the canonical basic set \((p_{N\Delta x_\mu})\) will be of the form

\[
\frac{\hat{\Delta}}{\hat{\Delta}(N\Delta x_\mu)x_\mu} \varphi = \frac{\hat{\Delta} \varphi}{\hat{\Delta}(N\Delta x_\mu)x_\mu} \doteq \left(\varphi(x_\mu + \frac{\ell}{cN} p_{N\Delta x_\mu}) - \varphi(x_\mu) \right) = \frac{\varphi(x_\mu + \frac{\ell}{cN} p_{N\Delta x_\mu}) - \varphi(x_\mu)}{\frac{\ell}{cN} p_{N\Delta x_\mu}}.
\]
\[
\phi(x_\mu + \ell/N_\Delta x_\mu) - \phi(x_\mu) = \left(\frac{\ell}{N_\Delta x_\mu} \right), \quad (75)
\]

This quantity, similar to the quantity (75) in the continuous case, is a 4-vector because all its components are transformed by LG as the corresponding components in a continuous theory. Consequently, similarly to a continuous theory, the scalar product of two 4-vectors is also scalar and we have \(\hat{\Delta} \cdot \hat{\Delta} \) \(\phi \), \(\hat{\Delta} \) \(\phi \), and \((\hat{\Delta} \phi) \cdot (\hat{\Delta} \phi) \), where

\[
\hat{\Delta} \phi = \frac{\ell}{\hbar} (p_\Delta x_\mu), \quad \phi = \sum \left(\phi(x_\mu + \ell/N_\Delta x_\mu) - \phi(x_\mu) \right) = \sum \left(\phi(x_\mu + \ell/N_\Delta x_\mu) - \phi(x_\mu) \right). \quad (76)
\]

In fact, \(\hat{\Delta} \phi \) in formula (76) is a highly accurate lattice approximation for the differential \(dx_\mu = \theta_\mu \cdot dx_\mu \) in the continuous case. Since LG transforms the set \((p_\Delta x_\mu) \) similarly to \((dx_\mu) \), all integral formulae for the continuous case in the proposed measurable variant of a theory, with the corresponding substitution:

\[
(dx_\mu) \Rightarrow \frac{\ell^2}{\hbar} (p_\Delta x_\mu); \quad \partial \Rightarrow \frac{\hat{\Delta}}{\Delta (\Delta x_\mu)} x_\mu; \quad \int \Rightarrow \sum. \quad (77)
\]

In particular, the measurable analog of a scalar – element of integration with respect to the four-dimensional volume \(\Omega \) in the continuous case

\[
d\Omega \equiv \prod_\mu dx_\mu \quad (78)
\]

is also scalar

\[
\Delta (\Delta x_\mu) \Omega \equiv \frac{\ell^8}{\hbar^4} \prod_{N_\Delta x_\mu} p_{N_\Delta x_\mu}. \quad (79)
\]

This is easily seen. Indeed, for LG acting in the continuous case, we have the transformation of the coordinate system \((x_\mu) \) to the new variables \((x'_\mu) \)

\[
d\Omega \Rightarrow Jd\Omega' = J \prod_\mu dx'_\mu, \quad (80)
\]

where \(J \) – Jacobian that is equal to 1, of the corresponding transformation \(g \in LG, (dx_\mu) \rightarrow g(dx_\mu) = (dx'_\mu) \). But it is obvious that, on going from the canonical basic set \((p_\Delta x_\mu) \) to the randomly measurable basic set \((p'_\mu) = g(p_\Delta x_\mu) \), we get the same Jacobian
J = 1. In what follows all the calculations are performed in terms of some canonically measurable basic set \((p_{N\Delta x})\).

In the present formalism we easily can find an analog for the 4-speed of a continuous theory

\[
u_\mu = \frac{dx_\mu}{ds},
\]

where, due to \(c = 1\), we have

\[
ds = \sqrt{\eta_{\mu\nu}dx^{\mu}dx^{\nu}} = dt\sqrt{1 - \frac{dx^2 + dy^2 + dz^2}{dt^2}} = dt\sqrt{1 - v^2}.
\]

In this case

\[
(dx_\mu) \to \ell^2\hbar(p_{N\Delta x}); ds \to \Delta s(p_{N\Delta x}) = \frac{\ell^2}{\hbar}p_{N\Delta x_0}\sqrt{1 - \bar{v}^2},
\]

where \(|\bar{v}| = \sqrt{\sum_{i\neq 0} \bar{v}_i^2}\) – absolute value of the three-dimensional speed of a particle in terms of the measurable quantities.

If \(\bar{v} = (\bar{v}_x, \bar{v}_y, \bar{v}_z)\) – vector of the three-dimensional speed of a particle in terms of the measurable quantities, then, similar to the continuous case, we obtain the measurable 4-speed as follows:

\[
\tilde{u}_\mu = \frac{\ell^2(p_{N\Delta x})}{\Delta s(p_{N\Delta x})} = \left(\frac{1}{\sqrt{1 - \bar{v}^2}}, \frac{\bar{v}}{\sqrt{1 - \bar{v}^2}}\right).
\]

According to (84), \(\tilde{u}_\mu\) is a function of \((p_{N\Delta x})\) and of \(\Delta s(p_{N\Delta x})\), i.e., we have

\[
\tilde{u}_\mu \equiv \tilde{u}_\mu[p_{N\Delta x}] \equiv \tilde{u}_\mu[\Delta s(p_{N\Delta x})],
\]

Then it is assumed that all measurable variations in \(\Delta s(p_{N\Delta x})\) are generated by the measurable variations of \((p_{N\Delta x})\). For any fixed set \(N_{\Delta x}\) having the attribute of (59), we can find a set (possibly, not a single one) \(N_{\Delta x}'\) satisfying the same attribute and minimizing the following expression:

\[
|\Delta s(p_{N_{\Delta x}'}) - \Delta s(p_{N_{\Delta x}})| = \min|\Delta s(p_{N_{\Delta x}'}) - \Delta s(p_{N_{\Delta x}})| \equiv |\tilde{\Delta}s(p_{N_{\Delta x}})|,
\]

\[
|N_{\Delta x}| \gg 1, (\Delta s(p_{N_{\Delta x}'}) \neq \Delta s(p_{N_{\Delta x}})).
\]

It is obvious that

\[
\lim_{|N_{\Delta x}| \to \infty} \tilde{\Delta}s(p_{N_{\Delta x}}) = 0.
\]
Then we denote
\[\tilde{\Delta} \tilde{u}_\mu [\Delta s(p_{N\Delta x_\mu})] = \frac{\Delta \tilde{u}_\mu [\Delta s(p_{N\Delta x_\mu})]}{\Delta s(p_{N\Delta x_\mu})} - \frac{\Delta \tilde{u}_\mu [\Delta s(p_{N'\Delta x_\mu})]}{\Delta s(p_{N'\Delta x_\mu})}. \] (88)

Formula (88) is a measurable analog of the continuous quantity \(du_\mu/ds \) representing the 4-acceleration of the canonical theory. In this case the 4-acceleration \(du_\mu/ds \) itself may be derived on going to the limit as follows:
\[\lim_{\left| N_{\Delta x_\mu} \right| \to \infty} \tilde{\Delta} \tilde{u}_\mu [\Delta s(p_{N\Delta x_\mu})] = \frac{du_\mu}{ds}. \] (89)
where in the general case all the variables, on which \(L(\Delta x_{\mu}) \) is dependent, are measurable quantities in the sense of **Definition 2**. The sum in the right-hand side (93) is taken by the steps \(\ell \Delta x_0 = \ell / N_{\Delta x_0} \) due to the fact that \(c = 1 \).

In this case the three-dimensional speed \(v \) in the initial Lagrangian \(L \) of a continuous theory

\[
L = -\beta c \sqrt{1 - \frac{v^2}{c^2}} = -\beta \sqrt{1 - \frac{v^2}{c^2}}, \quad c = 1
\]

should be replaced in \(L(\Delta x_{\mu}) \) by the three-dimensional **measurable** speed \(\tilde{v} \) varying in the time \(t \) not **continuously** but **discretely** by the steps \(\ell / N_{\Delta x_0} \).

All these definitions are easily extended to the case of a free particle having the mass \(m \). In particular, formulae (91),(93) in this case are of the form

\[
\sum_a \Delta s(p_{\Delta x_{\mu}}) = m \sum_a \Delta s(p_{\Delta x_{\mu}})
\]

and

\[
\sum_{t_2}^t L(\Delta x_{\mu}) \frac{\ell}{N_{\Delta x_0}}
\]

where the Lagrangian \(L \), due to \(c = 1 \), is equal to

\[
L(\Delta x_{\mu}) = -mc \sqrt{1 - \frac{\tilde{v}^2}{c^2}} = -m \sqrt{1 - \frac{\tilde{v}^2}{c^2}}.
\]

And \(\tilde{v} \) in the time \(t \) is varying discretely, as indicated in formula (94).

It is clear that in all the above-mentioned formulae there is a passage to the limit from the **measurable** operation \(S_{\Delta x_{\mu}} \) to the corresponding continuous operation \(S \)

\[
\lim _{(N_{\Delta x_{\mu}}) \to \infty} S_{\Delta x_{\mu}} = S.
\]

Similarly, for the momentum of a particle in the continuous case

\[
P = \frac{\partial L}{\partial v} = \frac{m v}{\sqrt{1 - v^2}};
\]

we can easily find its measurable analog

\[
P(\Delta x_{\mu}) = \frac{m \tilde{v}}{\sqrt{1 - \tilde{v}^2}}; \quad \tilde{v} = \tilde{v}(t).
\]
where \(\tilde{v} \)–vector of the three-dimensional speed of a particle in terms of the measurable quantities (formula (84)). Here, similar to the continuous case at low speeds, we have \(|\tilde{v}| \ll 1, (c = 1)\), and then \(\mathbf{p}_{(N\Delta x\mu)} = m\tilde{v} \).

In a similar way, for the fixed set \((N\Delta x\mu) \), we can obtain measurable variants of all the quantities known in a continuous theory \(\mathcal{E}, \ldots \) [41].

The corresponding quantities have the index \((N\Delta x\mu) \).

Specifically, for the energy \(\mathcal{E}_{(N\Delta x\mu)} \), we have

\[
\mathcal{E}_{(N\Delta x\mu)} = \mathbf{p}_{(N\Delta x\mu)}\tilde{v} - L_{(N\Delta x\mu)} = \frac{m}{\sqrt{1 - \tilde{v}^2}}. \tag{101}
\]

And hence, for the Hamiltonian, we have \(\mathcal{H}_{(N\Delta x\mu)} \)

\[
\mathcal{H}_{(N\Delta x\mu)} = \sqrt{p_{(N\Delta x\mu)}^2} + m^2; \tag{102}
\]

with a limiting transition to a continuous theory

\[
\begin{align*}
\lim_{(|N\Delta x\mu|) \to \infty} \mathbf{p}_{(N\Delta x\mu)} &= \mathbf{p}; \\
\lim_{(|N\Delta x\mu|) \to \infty} \mathcal{E}_{(N\Delta x\mu)} &= \mathcal{E}; \\
\lim_{(|N\Delta x\mu|) \to \infty} \mathcal{H}_{(N\Delta x\mu)} &= \mathcal{H}; \ldots
\end{align*} \tag{103}
\]

In this section all the limiting transitions from the measurable variant of a theory to the continuous variant may be derived using the results obtained in [10].

Actually, as the Lagrangian \(L = L(v) \) may be represented, to a high accuracy, in the capacity of the function of measurable quantities, in this case of speed \(\tilde{v} \) (with \(v \) replaced by \(\tilde{v} \) and \(L(v) \) replaced by \(L_{\text{meas}}(\tilde{v}) \)), the use of formulae (61)–(64) from [10] leads to

\[
\lim_{(|N\Delta x\mu|) \to \infty} \frac{\Delta L_{\text{meas}}(\tilde{v})}{\Delta \tilde{v}} = \lim_{\tilde{v} \to v, \Delta \tilde{v} \to 0} \frac{\Delta L_{\text{meas}}(\tilde{v})}{\Delta \tilde{v}} = \frac{\partial L(v)}{\partial v}. \tag{104}
\]

Also, the approach may be illustrated by the limiting transition from a measurable operation to the continuous operation \(\lim_{(|N\Delta x\mu|) \to \infty} S_{(N\Delta x\mu)} = S \) (formula (98)). This transition follows directly from formulae (66)–(68) in [10].

4 Concluding Comments and Explanations

4.1. In the previous section we have proceeded from some fixed canonically measurable basic set\((p_{N\Delta x\mu}) \). However, it is obvious that the orbit of LG
(66) (retaining the quadratic form (61)), involves many canonicallly measurable basic sets rather than one. In particular, for the operation of a group of spatial rotations $O(3)$, spatial components of the basic set $(p_{N_{\Delta x}})$, $i = 1, 2, 3$ may switch their positions, generating another canonicallly measurable basic set.

4.2. Let us denote the totality of all canonicallly measurable basic sets $(p_{N_{\Delta x}})$ as follows:

$$\text{Bas}(p_{N_{\Delta x}}) \doteq \{(p_{N_{\Delta x}}, \mu = 0, ..., 3), |N_{\Delta x}| \gg 1\}.$$ (105)

Then, due to the fact that, within the constant factor ℓ^2/\hbar, we have the equality $p_{N_{\Delta x}} = \ell/N_{\Delta x}$, the set $\text{Bas}(p_{N_{\Delta x}})$ is nothing else but the four-dimensional lattice

$$\text{Bas}(p_{N_{\Delta x}}) = \frac{\ell}{N_{\Delta x_0}} \times \frac{\ell}{N_{\Delta x_1}} \times \frac{\ell}{N_{\Delta x_2}} \times \frac{\ell}{N_{\Delta x_3}} = \left(\frac{\ell}{N_{\Delta x_\mu}}\right)^4, |(N_{\Delta x_\mu})| \gg 1.$$ (106)

It is clear that the mapping τ_{x_μ} of any of the components $\ell/N_{\Delta x_\mu}$ for the lattice $\ell/(N_{\Delta x_\mu})^4$ into the real interval $\varsigma, |\varsigma| \ll 1$:

$$\tau_{x_\mu} : \left(\frac{\ell}{N_{\Delta x_\mu}}\right) \mapsto \frac{1}{N_{\Delta x_\mu}}$$ (107)

will be very close to the continuous mapping. For fairly high $|N_{\Delta x_\mu}|$, this mapping may be considered as continuous to any accuracy. In terms of the lattice $\ell/(N_{\Delta x_\mu})^4$ for $|N_{\Delta x_\mu}| \to \infty$, this fact reflects the essence of all the limiting transitions from a measurable variant of a theory to the continuous one.

As noted above, $\text{Bas}(p_{N_{\Delta x}})$ is not retained by LG but any element of this set $(p_{N_{\Delta x}})$ is converted to some element $g(p_{N_{\Delta x}})$ (formula (66)) retaining the Minkowskian metric in the measurable form, i.e., to the quadratic form (61).

4.3. Clearly, for sufficiently high $|N_{\Delta x}| \gg 1$, all the calculations presented in this section are practically independent of the set $(N_{\Delta x})$. As $|(N_{\Delta x})|$ is growing, the transition from the fixed canonicallly measurable basic set $(p_{N_{\Delta x}})$ to the canonicallly measurable basic set $(p_{N'_{\Delta x}}), |N'_{\Delta x}| \geq |N_{\Delta x}|$ may be considered as the component-wise multiplication by a set of the factors $(\tau_{\mu} = N_{\Delta x_\mu}/N'_{\Delta x_\mu}), |\tau_{\mu}| \leq 1$ with one and the same operation of LG.

But such a transition is impossible at high energies $E \propto E_p$, i.e., for $|N_{\Delta x}| \approx 1$. The explanation is as follows: (i) the presentation becomes appreciably
discrete” because in this case the difference $\frac{h}{N\Delta x_\mu} - \frac{h}{N\Delta x_\mu}$ is great (due to $|N\Delta x_\mu| \approx 1$) and there is no possibility to have nearly continuous mapping of ς from 4.2.; (ii) based on formulae (10), (18), and so on from Section 2 of this paper, for $E \propto E_P$, the quantity $\frac{h}{N\Delta x_\mu} \neq p_{N\Delta x_\mu}$ and, for small $|(N\Delta x_\mu)|$, the momentum $p_{N\Delta x_\mu}$ is of the form

$$p_{N\Delta x_\mu} = p(N\Delta x_\mu, GUP) = \frac{h}{(N\Delta x_\mu - \frac{1}{4N\Delta x_\mu})\ell}$$

(108)

where $p(N\Delta x_\mu, GUP) = p(N_P, GUP)$ is taken from formula (38) for $N_P = N\Delta x_\mu$. Since, for high $|(N\Delta x_\mu)|$, LG has the same effect on any set $(p_{N\Delta x_\mu})$ as on (dx_μ) for small $|(N\Delta x_\mu)|$, in accordance with the correspondence principle, LG must affect the set $(p(N\Delta x_\mu, GUP))$ given by formula (108) in some other way. Thus, in the proposed “measurable” presentation the Lorentz-invariance is from the very beginning violated at high Plancks energies. This means that, unlike the continuous presentation, where violation of the Lorentz-invariance at Planck energies is a subject of investigation [42]–[45], in the considered case this property is integrated (embedded) into the theory. It should be noted that at high $|(N\Delta x_\mu)|$ we deal with primarily measurable variations, whereas at small $|(N\Delta x_\mu)|$ we have the generalized-measurable variations $p(N\Delta x_\mu, GUP)$ from formula (108). Consequently, we can state the fact of the Lorentz-invariance violation on going from primarily measurable quantities to generalized-measurable quantities.

4.4. In this way, based on the formulae in this section, we can conclude that, for a set of the integers $(N\Delta x_\mu), |(N\Delta x_\mu)| \gg 1$, with the use of the canonically measurable basic set $(p_{N\Delta x_\mu}) (\ell^4 (p_{N\Delta x_\mu}))$, we can construct a measurable variant of Special Relativity as a certain discrete approximation. In essence, this approximation may be called the lattice approximation due to formulae (106), (107). Besides, as formula (61) may be given in the form

$$\Delta s^2_{(p_{N\Delta x_\mu})} = \frac{\ell^4}{h^2} \eta_{\mu\nu} p_{N\Delta x_\mu} p_{N\Delta x_\nu} = \eta_{\mu\nu} \ell^2 (\alpha_{N\Delta x_\mu} \alpha_{N\Delta x_\nu})^{1/2},$$

(109)

where $\alpha_{N\Delta x_\mu}$ is a deformation parameter (formula (14), (19)...), the above-mentioned discrete lattice approximation may be called the Special Relativity deformation (in the sense of paper [39]). For $|(N\Delta x_\mu)| \to \infty$ or the same $\alpha_{N\Delta x_\mu} \to 0$, this deformation goes to the well-known (continuous) Special Relativity. So, as $|(N\Delta x_\mu)|$ is growing, we can have more and more accurate approximation measurable towards a continuous theory.
By the authors opinion, for sufficiently high $|(N_{\Delta x_{\mu}})|$, the measurable variant of Special Relativity gives a more realistic description than the continuous canonical variant.

More precisely, the following may be suggested

Hypothesis.

for any separate experiment in Special Relativity, there is the set $(N_{\Delta x_{\mu}})$ so that the measurable variant of Special Relativity constructed with respect to this set can correspond to the results of this experiment with unimprovable accuracy.

4.5. Returning to the beginning of this paper (Section 1), it may be stated that in the suggested formalism of the measurable (discrete) variant of a theory, as compared to the continuous variant, the infinitesimal quantities dx_{μ} in essence are replaced (within the constant factor ℓ^2/\hbar) by the quantities $p_{N\Delta x_{\mu}}$ which are dependent on all the three fundamental constants c, \hbar, G, because the minimal length $\ell \propto l_P$ is depending on them. However, this dependence is not felt at all at low energies $E; E \ll E_P$ due to great numbers of $|N_{\Delta x_{\mu}}|$ or, similarly, low numbers of $1/|N_{\Delta x_{\mu}}|$ which are a measure of the energy scale.

The situation is changed drastically on going to high energies $E; E \approx E_P$. In this case $|N_{\Delta x_{\mu}}| \approx 1$, in accordance with (1/$|N_{\Delta x_{\mu}}| \gg 0$), $p_{N\Delta x_{\mu}}$ is replaced by $p(N_{\Delta x_{\mu}}, GUP)$ from formula (108). Then the minimal length ℓ and hence all the fundamental constants c, \hbar, G become important in a theory.

Thus, in the suggested formalism there are many measurable variants of Special Relativity (at least, we have one for every canonical set $(p_{N\Delta x_{\mu}}, |N_{\Delta x_{\mu}}| \gg 1$ but some of them are coincident (item 4.1.)). Nevertheless, due to the above given formulae, the difference between these measurable variants is insignificant.

Afterword

A measurable variant of Special Relativity is constructed only in terms of the primarily measurable variations $p_{N_{\Delta x_{\mu}}}, |N_{\Delta x_{\mu}}| \gg 1$ by virtue of the fact that in the “flat case” of the Minkowskian space the existent energies E are considerably lower that the Planck energies $E \ll E_P$. Still it is obvious that, to construct a measurable variant of General Relativity (GR) at all the energy scales, we need both the primarily measurable variations $p_{N_{\Delta x_{\mu}}}, |N_{\Delta x_{\mu}}| \gg 1$ and generalized-measurable variations $p(N_{\Delta x_{\mu}}, GUP), |N_{\Delta x_{\mu}}| \approx 1$ from formula (108). In authors opinion, such construction should be realized jointly with a construction of a measurable variant for Quantum Theory (QT).

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.
References

Received: December 6, 2016; Published: January 10, 2017