Causal Communication Constraint for Two Qubits
in Hardy’s Ladder Proof of Non-locality

José Luis Cereceda

Distrito Telefónica, Edificio Este 1
28050 – Madrid, Spain

Copyright © 2015 José Luis Cereceda. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we consider Hardy’s ladder proof of non-locality for two qubits and $K+1$ observables per qubit, and show that the maximum success probability of Hardy’s ladder argument for non-locality allowed by generalized probabilistic theory reaches 50% irrespective of the value of K. This extends the known result for $K = 1$ to an arbitrary number of observables.

PACS: 03.65.Ud, 03.65.Ta

Keywords: two-level systems, Hardy’s ladder proof of non-locality, joint probability distribution, causal communication constraint, generalized probabilistic theory, chained CHSH-type inequality

1 Introduction

As is well known, quantum-mechanical probabilities can give rise to the violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality [11] up to a maximum value of $2\sqrt{2}$ (the so-called Tsirelson bound [24]). However, Popescu and Rohrlich [22] (see also [23]) showed with an explicit example that there are more general, non-quantum-mechanical probabilities which yield the maximal algebraic violation (namely, 4) of the CHSH inequality without violating the non-signaling condition which forbids faster-than-light communication
between distant observers. Following Hillery and Yurke [18], throughout this paper this condition will be referred to as the causal communication constraint.

In 1992, Hardy [15] gave a new kind of non-locality proof for two particles without using inequalities. He subsequently also showed [16] that this proof works for all entangled states of two two-level systems or qubits except for the maximally entangled state. The maximum probability of obtaining a contradiction between quantum mechanics and local realism in Hardy’s setup (involving two qubits and two observables per qubit) is found to be about 9% [16]. Moreover, it was shown in [7] that the maximal probability of success of Hardy’s non-locality argument can be increased up to 50% within the framework of generalized probabilistic theory (GPT) respecting the causal communication constraint. This result was later rediscovered in [10] (see also [13] for related work).

In this paper, we focus on the generalization of Hardy’s non-locality proof to the case of two qubits and $K+1$ observables per qubit ($K = 1, 2, 3, \ldots$), i.e., the so-called Hardy’s ladder proof of non-locality [17, 2].

It turns out that the maximum probability of obtaining a contradiction between quantum mechanics and local realism in Hardy’s ladder setup tends to 50% for a sufficient number of observables (that is, $K \to \infty$). We will show that the maximum success probability of Hardy’s ladder argument for non-locality in the context of GPT can reach a maximum of 50% for any value of K. This finding extends the above mentioned result for $K = 1$ [7, 10] to an arbitrary number of observables.

\section{Hardy’s ladder proof of non-locality for two qubits}

Consider two qubits A and B in the entangled state

$$|\Psi\rangle = \alpha|+\rangle_A|+\rangle_B - \beta|--\rangle_A|--\rangle_B,$$

where $\{|+\rangle_A, |--\rangle_A\} \{|--\rangle_B, |--\rangle_B\}$ is an arbitrary orthonormal basis in the state space of qubit A (B). Without loss of generality, it will be assumed that α and β are taken to be real and positive, with $\alpha^2 + \beta^2 = 1$. The entangled qubits fly apart to two distant locations where, for each run of the experiment, one of $K + 1$ available dichotomic observables is measured—A_k for qubit A and B_k for qubit B ($k = 0, 1, \ldots, K$). The observables A_k and B_k have corresponding operators $A_k = |a_k^+\rangle\langle a_k^+| - |a_k^-\rangle\langle a_k^-|$ and $B_k = |b_k^+\rangle\langle b_k^+| - |b_k^-\rangle\langle b_k^-|$, where the eigenvectors $|a_k^\pm\rangle$ and $|b_k^\pm\rangle$ are related to the original basis vectors $|\pm\rangle_A$ and

\footnote{Hardy’s original proof [16] corresponds to the case $K = 1$.}
Causal communication constraint for two qubits

\[|\pm\rangle_B \text{ by} \]

\[|a^+_k\rangle = \cos \alpha_k |+\rangle_A + \sin \alpha_k |-\rangle_A \]
\[|a^-_k\rangle = -\sin \alpha_k |+\rangle_A + \cos \alpha_k |-\rangle_A, \]

and

\[|b^+_k\rangle = \cos \alpha_k |+\rangle_B + \sin \alpha_k |-\rangle_B \]
\[|b^-_k\rangle = -\sin \alpha_k |+\rangle_B + \cos \alpha_k |-\rangle_B. \]

For there to be a contradiction between quantum mechanics and local realism, the observables \(A_k \) and \(B_k \) must satisfy the following conditions [17, 2]:

\[P_K = P(A_K = +1, B_K = +1) \neq 0, \]
\[P(A_k = +1, B_{k-1} = -1) = 0 \quad \text{for } k = 1 \text{ to } K, \]
\[P(A_{k-1} = -1, B_k = +1) = 0 \quad \text{for } k = 1 \text{ to } K, \]
\[P(A_0 = +1, B_0 = +1) = 0, \]

where \(P(A_k = i, B_{k'} = j) \) is the joint probability that, for the state (1), the measurement of \(A_k \) on qubit \(A \) gives the outcome \(i \), and that the measurement of \(B_{k'} \) on qubit \(B \) gives the outcome \(j \) \((k, k' = 0, 1, \ldots, K \text{ and } i, j = \pm 1)\). It is easy to see that, according to a local-realistic description of Hardy’s ladder experiment, fulfilment of the \(2K + 1 \) conditions in (3)-(5) necessarily implies that \(P_K = 0 \). Quantum-mechanically, however, we can have \(P_K \neq 0 \) while all the other conditions in (3)-(5) are satisfied. The magnitude of \(P_K \) can, therefore, be viewed as the degree of non-locality inherent in Equations (2)-(5). The quantum prediction for \(P_K \) (subject to the fulfilment of conditions (3)-(5)) depends on the free parameter \(\alpha_K \), the number of observables, and the coefficients \(\alpha \) and \(\beta \), through the relation [9]

\[P_K = \alpha^2 \left[1 - (\alpha/\beta)^{2K} \right]^2 \frac{\cos^2 \alpha_K}{1 + (\alpha/\beta)^{4K+2} \cot^2 \alpha_K}. \]

(6)

Note that, for \(\alpha = \beta \), we have \(P_K = 0 \), and no contradiction with local realism arises for the maximally entangled state in Hardy’s ladder setup. Moreover, it can be shown [9] that for a given quantum state (that is, for a given value of the ratio \(\alpha/\beta \)), the value of \(\tan^2 \alpha_K \) that maximizes (6) is

\[\tan^2 \alpha_K = (\alpha/\beta)^{2K+1}. \]

Using this relation into Equation (6), we obtain the optimized probability

\[P_K = \left(\frac{\alpha \beta^{2K+1} - \beta \alpha^{2K+1}}{\beta^{2K+1} + \alpha^{2K+1}} \right)^2, \]

(7)
which was originally derived by Hardy [17, 2]. It was also shown [17, 2] that the maximum value of P_K in Equation (7) is $(50 - \delta)\%$, which is realized for large K ($K \to \infty$) and a state that is not quite maximally entangled ($\alpha/\beta \to 1$).

For a given K, the function (7) reaches the maximum value for an appropriate choice of the ratio α/β. In Figure 1, we have plotted the maximum achievable probability P_K that is obtained for $K = 1$ to 100.

3 Causal communication constraint for two qubits in Hardy’s ladder setup

For the general Hardy’s ladder proof of non-locality for two qubits and $K + 1$ observables for each qubit, there are a total of $4(K + 1)^2$ joint probabilities $P(A_k = i, B_{k'} = j)$. These probabilities are assumed to satisfy the following constraints:

1. Non-negativity:

\[P(A_k = i, B_{k'} = j) \geq 0, \ \forall k, k', i, j \]

2. Normalization:

\[\sum_{i,j=\pm1} P(A_k = i, B_{k'} = j) = 1, \ \forall k, k' \]
3. Causal communication:

\[
\sum_{j=\pm 1} P(A_k = i, B_0 = j) = \sum_{j=\pm 1} P(A_k = i, B_1 = j) = \cdots = \sum_{j=\pm 1} P(A_k = i, B_K = j) \quad \forall k, i \quad (10)
\]

\[
\sum_{i=\pm 1} P(A_0 = i, B_{k'} = j) = \sum_{i=\pm 1} P(A_1 = i, B_{k'} = j) = \cdots = \sum_{i=\pm 1} P(A_K = i, B_{k'} = j) \quad \forall k', j \quad (11)
\]

The condition in (10) [(11)] stipulates that the marginal probability \(P(A_k = i) \) [\(P(B_{k'} = j) \)] of obtaining the outcome \(i \) [\(j \)] in a measurement of \(A_k \) \([B_{k'}] \) on qubit \(A \) \([B] \) is independent of which measurement \(B_0, B_1, \ldots, B_K \) \([A_0, A_1, \ldots, A_K] \) is performed on the distant qubit \(B \) \([A] \). The fulfilment of both (10) and (11) constitutes a physically sound requirement since the violation of either (10) or (11) would, in principle, allow two observers (one of them measuring qubit \(A \) and the other qubit \(B \)) to communicate superluminally. Both classical and quantum theories (in fact, all known physical theories) respect the causal communication constraint.

We have seen in Section 2 that, for Hardy’s ladder setup, we can make the quantum probabilities satisfy all the conditions in (2)-(5) with \(P_K \to 1/2 \) as \(K \to \infty \). One might ask, however, what is the prediction for \(P_K \) made by the less restrictive framework of GPT based solely on the assumptions (8)-(11). In what follows, it is shown that such a model gives a maximum of \(P_K = 1/2 \) for any value of \(K \). We first examine the cases \(K = 1, 2, 3 \), and then we establish the result generally. In the rest of this section, we employ the abbreviated notation \(P_{ij}^{k_{k'}} \) to refer to the joint probability \(P(A_k = i, B_{k'} = j) \).

3.1 Case \(K = 1 \)

For \(K = 1 \) (i.e., two observables per qubit: \(A_0, A_1 \) for qubit \(A \), and \(B_0, B_1 \) for qubit \(B \)), the causal communication constraint in Equations (10)-(11) reads as follows:

\[
\begin{align*}
P_{00}^{++} + P_{00}^{+-} &= P_{01}^{++} + P_{01}^{+-} \\
P_{10}^{++} + P_{10}^{+-} &= P_{11}^{++} + P_{11}^{+-} \\
P_{00}^{--} + P_{00}^{-+} &= P_{01}^{--} + P_{01}^{-+} \\
P_{10}^{--} + P_{10}^{-+} &= P_{11}^{--} + P_{11}^{-+} \\
P_{00}^{++} + P_{00}^{+-} &= P_{10}^{++} + P_{10}^{+-} \\
P_{01}^{++} + P_{01}^{+-} &= P_{11}^{++} + P_{11}^{+-} \\
P_{00}^{--} + P_{00}^{-+} &= P_{10}^{--} + P_{10}^{-+} \\
P_{01}^{--} + P_{01}^{-+} &= P_{11}^{--} + P_{11}^{-+} \\
\end{align*}
\] (12)
Furthermore, Hardy’s conditions in (3)-(5) for \(K = 1 \) mean that

\[
P_{00}^{++} = P_{01}^{+} = P_{10}^{+} = 0. \tag{13}
\]

It is straightforward to check that the following joint probability distribution

\[
\begin{align*}
P_{00}^{+} &= P_{00}^{+} = P_{01}^{+} = 1/2, \\
P_{00}^{0} &= P_{00}^{0} = P_{01}^{0} = P_{10}^{0} = P_{11}^{0} = 1/2
\end{align*}
\]

satisfies all the requirements of Equations (8)-(9) and (12)-(13). Note, in particular, that \(P_{1} = P_{11}^{++} = 1/2 \). Next we show that, in fact, \(1/2 \) is the maximum value of \(P_{11}^{++} \) allowed by GPT in the case in which \(P_{00}^{++} = P_{01}^{+} = P_{10}^{+} = 0 \). To see this, suppose on the contrary that we have simultaneously \(P_{11}^{++} > 1/2 \) and \(P_{00}^{++} = P_{01}^{+} = P_{10}^{+} = 0 \). Then the following inferences hold

- Since \(P_{11}^{++} > 1/2 \) and \(P_{00}^{+} = 0 \), from the 6th relation in (12) we deduce that \(P_{01}^{+} > 1/2 \).
- Since \(P_{01}^{+} > 1/2 \) and \(P_{00}^{+} = 0 \), from the 1st relation in (12) we deduce that \(P_{00}^{+} > 1/2 \).
- Since \(P_{11}^{++} > 1/2 \) and \(P_{10}^{+} = 0 \), from the 2nd relation in (12) we deduce that \(P_{10}^{+} > 1/2 \).
- Since \(P_{10}^{+} > 1/2 \) and \(P_{11}^{++} = 0 \), from the 5th relation in (12) we deduce that \(P_{00}^{+} > 1/2 \).

This can alternately be expressed as the following two sequences of implications

\[
\begin{align*}
P_{11}^{++} > \frac{1}{2} &\Rightarrow P_{01}^{+} > \frac{1}{2} \Rightarrow P_{00}^{+} > \frac{1}{2} \\
P_{11}^{++} > \frac{1}{2} &\Rightarrow P_{10}^{+} > \frac{1}{2} \Rightarrow P_{00}^{+} > \frac{1}{2}
\end{align*}
\]

By adding the two inequalities in the last column we find that \(P_{00}^{+} + P_{01}^{+} > 1 \), which contradicts the normalization condition \(P_{00}^{+} + P_{01}^{+} + P_{10}^{+} + P_{11}^{+} = 1 \). Thus we must have that \(P_{11}^{++} \leq 1/2 \) when \(P_{00}^{++} = P_{01}^{+} = P_{10}^{+} = 0 \). Combining this upper bound with the non-negativity condition, we conclude that \(P_{11}^{++} \) can vary in the range \(0 \leq P_{11}^{++} \leq 1/2 \) without violating the causal communication constraint.

It is worth noting that the above upper bound for \(P_{11}^{++} \) can also be deduced directly from the relation [7, 8]

\[
P_{11}^{++} = \frac{1}{2} (1 + P_{00}^{++} - P_{00}^{+} - P_{01}^{+} + P_{01}^{+} + P_{10}^{+} - P_{10}^{+} - P_{11}^{+} - P_{11}^{+}).
\]
Since \(P_{kk}^{ij} \geq 0 \), from this relation it quickly follows that \(P_{11}^{++} \leq \frac{1}{2}(1 + P_{00}^{++} + P_{01}^{--} + P_{10}^{+--}) \). Therefore, when the probabilities \(P_{00}^{++} \), \(P_{01}^{--} \), and \(P_{10}^{+--} \) vanish, we conclude that \(P_{11}^{++} \leq 1/2 \).

The probability distribution (14) can be written compactly as

\[
P_{kk}^{ij} = \begin{cases}
\frac{1}{2}, & \text{if } \delta_{ij} = kk' \oplus k \oplus k'; \\
0, & \text{otherwise},
\end{cases}
\]

where \(k, k' \in \{0, 1\}, \delta_{++} = \delta_{--} = 1, \delta_{+-} = \delta_{-+} = 0 \), and where \(\oplus \) indicates addition modulo 2. The set of probabilities (15) corresponds to the Popescu-Rohrlich-type correlations leading to the maximal algebraic violation of the CHSH inequality [11]

\[
|E(A_0, B_1) + E(A_1, B_1) + E(A_1, B_0) - E(A_0, B_0)| \leq 2,
\]

the correlation function \(E(A_k, B_{k'}) \) being defined by \(P_{kk'}^{++} + P_{kk'}^{--} = P_{kk'}^{+-} - P_{kk'}^{-+} \).

3.2 Case \(K = 2 \)

For \(K = 2 \) (i.e., three observables per qubit: \(A_0, A_1, A_2 \) for qubit \(A \), and \(B_0, B_1, B_2 \) for qubit \(B \)), the causal communication constraint in Equations (10)-(11) implies that

\[
\begin{align*}
P_{00}^{++} + P_{00}^{+-} &= P_{00}^{++} + P_{00}^{+-} = P_{00}^{++} + P_{00}^{++} \\
P_{01}^{++} + P_{01}^{+-} &= P_{01}^{++} + P_{01}^{+-} = P_{01}^{++} + P_{10}^{++} \\
P_{10}^{++} + P_{10}^{+-} &= P_{10}^{++} + P_{10}^{+-} = P_{10}^{++} + P_{10}^{++} \\
P_{20}^{++} + P_{20}^{+-} &= P_{20}^{++} + P_{20}^{+-} = P_{20}^{++} + P_{20}^{++} \\
P_{00}^{+--} + P_{00}^{-+-} &= P_{00}^{+--} + P_{00}^{-+-} = P_{00}^{+--} + P_{00}^{+--} \\
P_{01}^{+--} + P_{01}^{-+-} &= P_{01}^{+--} + P_{01}^{-+-} = P_{01}^{+--} + P_{01}^{+--} \\
P_{10}^{+--} + P_{10}^{-+-} &= P_{10}^{+--} + P_{10}^{-+-} = P_{10}^{+--} + P_{10}^{+--} \\
P_{20}^{+--} + P_{20}^{-+-} &= P_{20}^{+--} + P_{20}^{-+-} = P_{20}^{+--} + P_{20}^{+--}
\end{align*}
\]

(16)

On the other hand, Hardy’s conditions in (3)-(5) for \(K = 2 \) are

\[
P_{00}^{++} = P_{01}^{--} = P_{10}^{+--} = P_{21}^{+--} = 0.
\]

(17)
It is readily verified that the following joint probability distribution

\[
P_{kk'}^{ij} = \begin{cases}
\frac{1}{2}, & \text{for } i = j \text{ and } \forall k, k' \in \{0, 1, 2\} \text{ except for } k = k' = 0; \\
0, & \text{for } i = j \text{ and } k = k' = 0; \\
0, & \text{for } i \neq j \text{ and } \forall k, k' \in \{0, 1, 2\} \text{ except for } k = k' = 0; \\
\frac{1}{2}, & \text{for } i \neq j \text{ and } k = k' = 0,
\end{cases}
\]

(18)

satisfies all the conditions in Equations (8)-(9) and (16)-(17), with \(P_2 = P_{22}^{++} = 1/2 \). It can be shown that, in fact, 1/2 is the maximum value for \(P_{22}^{++} \) allowed by GPT for the case where \(P_{00}^{++} = P_{01}^{++} = P_{10}^{++} = P_{12}^{++} = P_{21}^{++} = 0 \). To see this, suppose on the contrary that we have simultaneously \(P_{22}^{++} > 1/2 \) and \(P_{00}^{++} = P_{01}^{++} = P_{10}^{++} = P_{12}^{++} = P_{21}^{++} = 0 \). Then the following inferences follow

- Since \(P_{22}^{++} > 1/2 \) and \(P_{21}^{++} = 0 \), from the 3rd relation in (16) we deduce that \(P_{21}^{++} > 1/2 \).
- Since \(P_{21}^{++} > 1/2 \) and \(P_{01}^{++} = 0 \), from the 8th relation in (16) we deduce that \(P_{01}^{++} > 1/2 \).
- Since \(P_{01}^{++} > 1/2 \) and \(P_{00}^{++} = 0 \), from the 1st relation in (16) we deduce that \(P_{00}^{++} > 1/2 \).
- Since \(P_{22}^{++} > 1/2 \) and \(P_{12}^{++} = 0 \), from the 9th relation in (16) we deduce that \(P_{12}^{++} > 1/2 \).
- Since \(P_{12}^{++} > 1/2 \) and \(P_{10}^{++} = 0 \), from the 2nd relation in (16) we deduce that \(P_{10}^{++} > 1/2 \).
- Since \(P_{10}^{++} > 1/2 \) and \(P_{00}^{++} = 0 \), from the 7th relation in (16) we deduce that \(P_{00}^{++} > 1/2 \).

Expressing this as two sequences of implications

\[
\left\{ \begin{align*}
P_{22}^{++} &> \frac{1}{2} \Rightarrow P_{21}^{++} > \frac{1}{2} \Rightarrow P_{01}^{++} > \frac{1}{2} \Rightarrow P_{00}^{++} > \frac{1}{2} \\
P_{22}^{++} &> \frac{1}{2} \Rightarrow P_{12}^{++} > \frac{1}{2} \Rightarrow P_{10}^{++} > \frac{1}{2} \Rightarrow P_{00}^{++} > \frac{1}{2}
\end{align*} \right\}
\]

we can see from the last two inequalities that \(P_{00}^{++} + P_{00}^{-+} > 1 \), contradicting the normalization condition \(P_{00}^{++} + P_{00}^{-+} + P_{00}^{+-} + P_{00}^{-} = 1 \). We therefore conclude that, when Hardy’s conditions (17) are satisfied, the probability \(P_{22}^{++} \) can vary in the range \(0 \leq P_{22}^{++} \leq 1/2 \) while respecting the causal communication constraint.

We further note that the probability distribution (18) gives the maximal algebraic violation (namely, 6) of the chained CHSH-type inequality [4, 25]

\[|E(A_0, B_1) + E(A_1, B_2) + E(A_2, B_2) + E(A_2, B_1) + E(A_1, B_0) - E(A_0, B_0)| \leq 4. \]
3.3 Case $K = 3$

For $K = 3$ (i.e., four observables per qubit: A_0, A_1, A_2, A_3 for qubit A, and B_0, B_1, B_2, B_3 for qubit B), the causal communication constraint in Equations (10)-(11) implies the following set of conditions:

$$
\begin{align*}
P^{++}_{10} + P_{10}^{+-} &= P_{01}^{++} + P_{01}^{+-} = P_{02}^{++} + P_{02}^{+-} = P_{03}^{++} + P_{03}^{+-} \\
&= P_{11}^{++} + P_{11}^{+-} = P_{12}^{++} + P_{12}^{+-} = P_{13}^{++} + P_{13}^{+-} \\
&= P_{21}^{++} + P_{21}^{+-} = P_{22}^{++} + P_{22}^{+-} = P_{23}^{++} + P_{23}^{+-} \\
&= P_{31}^{++} + P_{31}^{+-} = P_{32}^{++} + P_{32}^{+-} = P_{33}^{++} + P_{33}^{+-} \\
&= P_{00}^{++} + P_{00}^{+-} = P_{01}^{++} + P_{01}^{+-} = P_{02}^{++} + P_{02}^{+-} = P_{03}^{++} + P_{03}^{+-} \\
&= P_{10}^{++} + P_{10}^{+-} = P_{11}^{++} + P_{11}^{+-} = P_{12}^{++} + P_{12}^{+-} = P_{13}^{++} + P_{13}^{+-} \\
&= P_{20}^{++} + P_{20}^{+-} = P_{21}^{++} + P_{21}^{+-} = P_{22}^{++} + P_{22}^{+-} = P_{23}^{++} + P_{23}^{+-} \\
&= P_{30}^{++} + P_{30}^{+-} = P_{31}^{++} + P_{31}^{+-} = P_{32}^{++} + P_{32}^{+-} = P_{33}^{++} + P_{33}^{+-} \\
&= P_{00}^{++} + P_{00}^{+-} = P_{10}^{++} + P_{10}^{+-} = P_{20}^{++} + P_{20}^{+-} = P_{30}^{++} + P_{30}^{+-} \\
&= P_{01}^{++} + P_{01}^{+-} = P_{11}^{++} + P_{11}^{+-} = P_{21}^{++} + P_{21}^{+-} = P_{31}^{++} + P_{31}^{+-} \\
&= P_{02}^{++} + P_{02}^{+-} = P_{12}^{++} + P_{12}^{+-} = P_{22}^{++} + P_{22}^{+-} = P_{32}^{++} + P_{32}^{+-} \\
&= P_{03}^{++} + P_{03}^{+-} = P_{13}^{++} + P_{13}^{+-} = P_{23}^{++} + P_{23}^{+-} = P_{33}^{++} + P_{33}^{+-} \\
\end{align*}
$$

while Hardy’s conditions in (3)-(5) for $K = 3$ are

$$
P_{00}^{++} = P_{01}^{+-} = P_{10}^{--} = P_{12}^{--} = P_{21}^{--} = P_{23}^{++} = P_{32}^{++} = 0. \tag{20}
$$

It is readily checked that the following joint probability distribution

$$
P_{k,k'}^{ij} = \begin{cases}
\frac{1}{2}, & \text{for } i = j \text{ and } \forall k, k' \in \{0, 1, 2, 3\} \text{ except for } k = k' = 0; \\
0, & \text{for } i = j \text{ and } k = k' = 0; \\
0, & \text{for } i \neq j \text{ and } \forall k, k' \in \{0, 1, 2, 3\} \text{ except for } k = k' = 0; \\
\frac{1}{2}, & \text{for } i \neq j \text{ and } k = k' = 0,
\end{cases} \tag{21}
$$

satisfies all the conditions in Equations (8)-(9) and (19)-(20), with $P_3 = P_{33}^{++} = 1/2$. Likewise, it turns out that $1/2$ is the maximum of P_{33}^{++} allowed by GPT when Hardy’s conditions (20) are fulfilled. To see this, suppose on the contrary that we have simultaneously $P_{33}^{++} > 1/2$ and $P_{00}^{++} = P_{01}^{-+} = P_{10}^{--} = P_{21}^{--} = P_{23}^{++} = P_{32}^{++} = P_{33}^{++} = 0$. Then the following inferences follow

- Since $P_{33}^{++} > 1/2$ and $P_{33}^{++} = 0$, from the 12th relation in (19) we deduce that $P_{33}^{++} > 1/2$.

• Since $P_{23}^{++} > 1/2$ and $P_{21}^{+-} = 0$, from the 3rd relation in (19) we deduce that $P_{21}^{++} > 1/2$.

• Since $P_{21}^{++} > 1/2$ and $P_{01}^{++} = 0$, from the 10th relation in (19) we deduce that $P_{01}^{++} > 1/2$.

• Since $P_{01}^{++} > 1/2$ and $P_{00}^{++} = 0$, from the 1st relation in (19) we deduce that $P_{00}^{++} > 1/2$.

• Since $P_{33}^{++} > 1/2$ and $P_{32}^{+-} = 0$, from the 4th relation in (19) we deduce that $P_{32}^{++} > 1/2$.

• Since $P_{32}^{++} > 1/2$ and $P_{12}^{+-} = 0$, from the 11th relation in (19) we deduce that $P_{12}^{++} > 1/2$.

• Since $P_{12}^{++} > 1/2$ and $P_{10}^{+-} = 0$, from the 2nd relation in (19) we deduce that $P_{10}^{++} > 1/2$.

• Since $P_{10}^{++} > 1/2$ and $P_{00}^{++} = 0$, from the 9th relation in (19) we deduce that $P_{00}^{++} > 1/2$.

Expressing this as two sequences of implications

\[
\begin{align*}
P_{33}^{++} > \frac{1}{2} & \Rightarrow P_{23}^{++} > \frac{1}{2} \Rightarrow P_{21}^{++} > \frac{1}{2} \Rightarrow P_{01}^{++} > \frac{1}{2} \Rightarrow P_{00}^{++} > \frac{1}{2} \\
P_{33}^{++} > \frac{1}{2} & \Rightarrow P_{32}^{++} > \frac{1}{2} \Rightarrow P_{12}^{++} > \frac{1}{2} \Rightarrow P_{10}^{++} > \frac{1}{2} \Rightarrow P_{00}^{++} > \frac{1}{2}
\end{align*}
\]

we obtain $P_{00}^{++} + P_{00}^{+-} > 1$ from the last two inequalities, and this contradicts the normalization condition $P_{00}^{++} + P_{00}^{+-} + P_{00}^{--} + P_{00}^{--} = 1$. Thus, we conclude that, when Hardy conditions (20) are met, the probability P_{33}^{++} can vary in the range $0 \leq P_{33}^{++} \leq 1/2$ without violating the causal communication constraint.

On the other hand, the probability distribution (21) gives the maximal algebraic violation (namely, 8) of the chained CHSH-type inequality [4, 25]

\[
|E(A_0, B_1) + E(A_1, B_2) + E(A_2, B_3) + E(A_3, B_3) \\
+ E(A_3, B_2) + E(A_2, B_1) + E(A_1, B_0) - E(A_0, B_0)| \leq 6.
\]

3.4 The general case

The above results for $K = 1, 2, 3$ generalize in a straightforward way to an arbitrary number $K + 1$ of observables per qubit (i.e., $A_0, A_1, \ldots A_K$ for qubit
A, and \(B_0, B_1, \ldots, B_K\) for qubit \(B\). To show this, we write the causal communication constraint in Equations (10)-(11) in the form

\[
\begin{align*}
&\begin{aligned}
P_{00}^{++} + P_{00}^{+-} + P_{01}^{++} + P_{01}^{+\cdot} = \ldots = P_{0K}^{++} + P_{0K}^{+\cdot} \\
P_{10}^{++} + P_{10}^{+-} + P_{11}^{++} + P_{11}^{+\cdot} = \ldots = P_{1K}^{++} + P_{1K}^{+\cdot} \\
\quad \vdots
\end{aligned} \\
&\begin{aligned}
P_{K0}^{++} + P_{K0}^{+-} + P_{K1}^{++} + P_{K1}^{+\cdot} = \ldots = P_{KK}^{++} + P_{KK}^{+\cdot}
\end{aligned}
\end{align*}
\]

(22)

with a total of \(4(K+1)\) relations, and \(K\) equals signs in each relation. Furthermore, Hardy’s conditions in (3)-(5) read as

\[
P_{00}^{++} = P_{01}^{+-} = P_{10}^{++} = P_{11}^{+\cdot} = \ldots = P_{K-1,K}^{++} = P_{K,K-1}^{+\cdot} = 0.
\]

(23)

The following joint probability distribution (which is a direct generalization of the previous particular distributions (14), (18), and (21))

\[
P_{kk'}^{ij} = \begin{cases}
\frac{1}{2}, & \text{for } i = j \text{ and } \forall k, k' \in \{0, 1, \ldots, K\} \text{ except for } k = k' = 0; \\
0, & \text{for } i = j \text{ and } k = k' = 0; \\
0, & \text{for } i \neq j \text{ and } k, k' \in \{0, 1, \ldots, K\} \text{ except for } k = k' = 0; \\
\frac{1}{2}, & \text{for } i \neq j \text{ and } k = k' = 0,
\end{cases}
\]

(24)

then satisfies all the conditions in Equations (8)-(9) and (22)-(23), with \(P_K = P_{KK}^{++} = 1/2\). Similarly, it can be shown that \(1/2\) is the maximum value of \(P_{KK}^{++}\) allowed by GPT when Hardy’s conditions (23) are fulfilled. Indeed, assuming that \(P_{KK}^{++} > 1/2\) and \(P_{00}^{++} = P_{01}^{+-} = P_{10}^{++} = \ldots = P_{K-1,K}^{++} = P_{K,K-1}^{+\cdot} = 0\), from the relations in the first and third blocks of Equation (22) one can derive the following two sequences of implications:
For $K = 1, 3, 5, \ldots$

$$P_{KK}^{++} > \frac{1}{2} \Rightarrow P_{K-1,K}^{++} > \frac{1}{2} \Rightarrow P_{K-2,K-2}^{++} > \frac{1}{2} \Rightarrow P_{K-3,K-3}^{++} > \frac{1}{2} \Rightarrow \ldots$$

$$P_{K,K}^{++} > \frac{1}{2} \Rightarrow P_{K,K-1}^{++} > \frac{1}{2} \Rightarrow P_{K-1,K}^{++} > \frac{1}{2} \Rightarrow P_{K-2,K-2}^{++} > \frac{1}{2} \Rightarrow \ldots$$

where each constituent sequence involves exactly $K + 1$ implication signs. For either odd or even K, we end up with $P_{00}^{++} + P_{00}^{--} > 1$ from the last two inequalities, contradicting the normalization condition $P_{00}^{++} + P_{00}^{--} + P_{00}^{+-} + P_{00}^{-+} = 1$. Hence, it follows that, when Hardy’s conditions (23) are fulfilled, the probability P_{KK}^{++} can vary in the range $0 \leq P_{KK}^{++} \leq 1/2$ without violating the causal communication constraint.

We note that the probability distribution (24) gives the maximal algebraic violation (namely, $2K + 2$) of the chained CHSH inequality [4, 25]

$$\left| \sum_{k=1}^{K} E(A_{k-1}, B_k) + \sum_{k=1}^{K} E(A_{k}, B_{k-1}) + E(A_{K}, B_K) - E(A_0, B_0) \right| \leq 2K, \quad (25)$$

where the $2K + 2$ pairs of observables $(A_0, B_0), (A_K, B_K), (A_{k-1}, B_k), (A_k, B_{k-1}), k = 1, 2, \ldots, K$, appearing in the left-hand side of inequality (25) are precisely those in Equations (2)-(5). Moreover, we point out that the maximum value of the left-hand side of (25) predicted by quantum mechanics is given by [25] $2(K + 1) \cos \frac{\pi}{2(K+1)}$. For sufficiently large K, we have that $\cos \frac{\pi}{2(K+1)} \approx 1$, and then the left-hand side of (25) approaches the algebraic limit $2K + 2$. This corresponds to the case in which the quantum-mechanical probabilities satisfy all Hardy’s non-locality conditions (2)-(5) with $P_K \rightarrow 1/2$ as $K \rightarrow \infty$. It is easily seen that, in this limit, a direct (“all or nothing”) contradiction between quantum mechanics and local realism arises for Hardy’s ladder setup [9].
Finally, we mention that a complete characterization of the extremal non-signaling bipartite probability distributions P_{ab}^{xy} for $a, b \in \{0, 1\}$, $x \in \{0, 1, \ldots, d_x - 1\}$ and $y \in \{0, 1, \ldots, d_y - 1\}$, has been given in [19]. The probability distribution (24) constitutes a representative element of a fully non-local, non-deterministic extremal distribution corresponding to the case in which $d_x = d_y = K + 1$.

4 Conclusion

In conclusion, we have shown that the success probability of Hardy’s ladder argument for non-locality for two qubits and $K + 1$ observables per qubit in the framework of GPT reaches a maximum of 50% for any value of K, thereby generalizing the known result for $K = 1$ [7, 10] to an arbitrary number of observables. Incidentally, we observe that, as shown in [10], the maximum success probability of Hardy’s non-locality argument for three qubits and two observables per qubit also reaches a value of 50% in the context of GPT.

In view of our results, we conclude that the causal communication constraint by itself cannot account (unless in the limit of a truly infinite number of observables; see Figure 1) for the upper bound of P_K predicted by quantum mechanics for Hardy’s ladder setup. It is therefore worthwhile to investigate whether such quantum bound for P_K could naturally emerge as a necessary consequence of some additional constraints, other than causal communication, such as those ensuing from the physical principles of non-trivial communication complexity [3], information causality [21], macroscopic locality [20], and local orthogonality [14] (also known as the exclusivity principle [5, 27, 6]). In this respect, Ahanj et al. [1] (see also [26]) showed that, for Hardy’s setup for two qubits and two observables per qubit, the 50% bound prescribed by the causal communication constraint is lowered to $\frac{\sqrt{2} - 1}{2} \approx 0.207$ under the condition of information causality. Subsequently, Das et al. [12] applied the local orthogonality principle to two copies of Hardy’s set of correlations and found that the maximum success probability of Hardy’s argument is reduced to ≈ 0.177 which is relatively closer to the corresponding quantum value ≈ 0.09. It will be interesting to look for the bounds that are imposed by the above mentioned physical principles on Hardy’s ladder setup.

References

Received: April 23, 2015; Published: May 16, 2015